利用物理信息强化学习实现安全高效的多代理碰撞规避

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-29 DOI:10.1109/LRA.2024.3487491
Pu Feng;Rongye Shi;Size Wang;Junkang Liang;Xin Yu;Simin Li;Wenjun Wu
{"title":"利用物理信息强化学习实现安全高效的多代理碰撞规避","authors":"Pu Feng;Rongye Shi;Size Wang;Junkang Liang;Xin Yu;Simin Li;Wenjun Wu","doi":"10.1109/LRA.2024.3487491","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) has shown great promise in addressing multi-agent collision avoidance challenges. However, existing RL-based methods often suffer from low training efficiency and poor action safety. To tackle these issues, we introduce a physics-informed reinforcement learning framework equipped with two modules: a Potential Field (PF) module and a Multi-Agent Multi-Level Safety (MAMLS) module. The PF module uses the Artificial Potential Field method to compute a regularization loss, adaptively integrating it into the critic's loss to enhance training efficiency. The MAMLS module formulates action safety as a constrained optimization problem, deriving safe actions by solving this optimization. Furthermore, to better address the characteristics of multi-agent collision avoidance tasks, multi-agent multi-level constraints are introduced. The results of simulations and real-world experiments showed that our physics-informed framework offers a significant improvement in terms of both the efficiency of training and safety-related metrics over advanced baseline methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11138-11145"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe and Efficient Multi-Agent Collision Avoidance With Physics-Informed Reinforcement Learning\",\"authors\":\"Pu Feng;Rongye Shi;Size Wang;Junkang Liang;Xin Yu;Simin Li;Wenjun Wu\",\"doi\":\"10.1109/LRA.2024.3487491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) has shown great promise in addressing multi-agent collision avoidance challenges. However, existing RL-based methods often suffer from low training efficiency and poor action safety. To tackle these issues, we introduce a physics-informed reinforcement learning framework equipped with two modules: a Potential Field (PF) module and a Multi-Agent Multi-Level Safety (MAMLS) module. The PF module uses the Artificial Potential Field method to compute a regularization loss, adaptively integrating it into the critic's loss to enhance training efficiency. The MAMLS module formulates action safety as a constrained optimization problem, deriving safe actions by solving this optimization. Furthermore, to better address the characteristics of multi-agent collision avoidance tasks, multi-agent multi-level constraints are introduced. The results of simulations and real-world experiments showed that our physics-informed framework offers a significant improvement in terms of both the efficiency of training and safety-related metrics over advanced baseline methods.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11138-11145\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737374/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737374/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

强化学习(RL)在解决多机器人防撞难题方面已显示出巨大前景。然而,现有的基于 RL 的方法往往存在训练效率低和行动安全性差的问题。为了解决这些问题,我们引入了一个物理信息强化学习框架,该框架配备了两个模块:势场(PF)模块和多代理多级安全(MAMLS)模块。PF 模块使用人工势场方法计算正则化损失,并自适应地将其整合到批评者损失中,以提高训练效率。MAMLS 模块将行动安全视为一个约束优化问题,通过求解该优化问题得出安全行动。此外,为了更好地应对多机器人防碰撞任务的特点,还引入了多机器人多级约束。模拟和实际实验结果表明,与先进的基线方法相比,我们的物理信息框架在训练效率和安全相关指标方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safe and Efficient Multi-Agent Collision Avoidance With Physics-Informed Reinforcement Learning
Reinforcement learning (RL) has shown great promise in addressing multi-agent collision avoidance challenges. However, existing RL-based methods often suffer from low training efficiency and poor action safety. To tackle these issues, we introduce a physics-informed reinforcement learning framework equipped with two modules: a Potential Field (PF) module and a Multi-Agent Multi-Level Safety (MAMLS) module. The PF module uses the Artificial Potential Field method to compute a regularization loss, adaptively integrating it into the critic's loss to enhance training efficiency. The MAMLS module formulates action safety as a constrained optimization problem, deriving safe actions by solving this optimization. Furthermore, to better address the characteristics of multi-agent collision avoidance tasks, multi-agent multi-level constraints are introduced. The results of simulations and real-world experiments showed that our physics-informed framework offers a significant improvement in terms of both the efficiency of training and safety-related metrics over advanced baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” NavTr: Object-Goal Navigation With Learnable Transformer Queries A Diffusion-Based Data Generator for Training Object Recognition Models in Ultra-Range Distance Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm MR-ULINS: A Tightly-Coupled UWB-LiDAR-Inertial Estimator With Multi-Epoch Outlier Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1