通过 p-n 异质结界面工程激活二维基底面中的隐藏催化位点,实现高效氧进化反应

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2024-11-12 DOI:10.1002/aenm.202403722
Eugene Kim, Sungsoon Kim, Yongchul Kim, Kiran Hamkins, Jihyun Baek, MinJoong Kim, Tae‐Kyung Liu, Young Moon Choi, Jung Hwan Lee, Gyu Yong Jang, Kug‐Seung Lee, Geunsik Lee, Xiaolin Zheng, Jong Hyeok Park
{"title":"通过 p-n 异质结界面工程激活二维基底面中的隐藏催化位点,实现高效氧进化反应","authors":"Eugene Kim, Sungsoon Kim, Yongchul Kim, Kiran Hamkins, Jihyun Baek, MinJoong Kim, Tae‐Kyung Liu, Young Moon Choi, Jung Hwan Lee, Gyu Yong Jang, Kug‐Seung Lee, Geunsik Lee, Xiaolin Zheng, Jong Hyeok Park","doi":"10.1002/aenm.202403722","DOIUrl":null,"url":null,"abstract":"Nonprecious metal‐based 2D materials have shown promising electrocatalytic activity toward the oxygen evolution reaction (OER). However, the catalytically active sites of 2D materials are mainly presented at the edge, and most of their basal planes are still catalytically inactive, which turns into a significant drawback on the catalytic efficiency. Here, a novel p–n heterojunction strategy is suggested that generates active sites on the basal plane of 2D NiFe‐layered double hydroxide (NiFe‐LDH). The n‐type NiFe‐LDH is first grown on a nickel foam (NF) substrate, and p‐type Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanocubes are deposited through a simple dip‐coating method to fabricate a Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/NiFe‐LDH@NF p–n heterojunction electrode. As a result, electron transfer is induced at the interface of p‐type Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> and n‐type NiFe‐LDH, which consequently promotes oxidation of the inert Ni<jats:sup>2+</jats:sup> state to a more catalytically active Ni<jats:sup>3+</jats:sup> state on the inert basal plane of NiFe‐LDH. As‐prepared Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/NiFe‐LDH@NF electrodes obtained enhanced OER performance showing a high current density of 100 mA cm<jats:sup>−2</jats:sup> at 1.48 V (vs RHE) which outperforms that of pristine NiFe‐LDH@NF. The utilization of the p–n junction concept will disclose a new strategy for modifying the electronic structure of the catalytically inactive basal plane and stimulating its electrocatalytic activity.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"16 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of Hidden Catalytic Sites in 2D Basal Plane via p–n Heterojunction Interface Engineering Toward Efficient Oxygen Evolution Reaction\",\"authors\":\"Eugene Kim, Sungsoon Kim, Yongchul Kim, Kiran Hamkins, Jihyun Baek, MinJoong Kim, Tae‐Kyung Liu, Young Moon Choi, Jung Hwan Lee, Gyu Yong Jang, Kug‐Seung Lee, Geunsik Lee, Xiaolin Zheng, Jong Hyeok Park\",\"doi\":\"10.1002/aenm.202403722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonprecious metal‐based 2D materials have shown promising electrocatalytic activity toward the oxygen evolution reaction (OER). However, the catalytically active sites of 2D materials are mainly presented at the edge, and most of their basal planes are still catalytically inactive, which turns into a significant drawback on the catalytic efficiency. Here, a novel p–n heterojunction strategy is suggested that generates active sites on the basal plane of 2D NiFe‐layered double hydroxide (NiFe‐LDH). The n‐type NiFe‐LDH is first grown on a nickel foam (NF) substrate, and p‐type Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanocubes are deposited through a simple dip‐coating method to fabricate a Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/NiFe‐LDH@NF p–n heterojunction electrode. As a result, electron transfer is induced at the interface of p‐type Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> and n‐type NiFe‐LDH, which consequently promotes oxidation of the inert Ni<jats:sup>2+</jats:sup> state to a more catalytically active Ni<jats:sup>3+</jats:sup> state on the inert basal plane of NiFe‐LDH. As‐prepared Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/NiFe‐LDH@NF electrodes obtained enhanced OER performance showing a high current density of 100 mA cm<jats:sup>−2</jats:sup> at 1.48 V (vs RHE) which outperforms that of pristine NiFe‐LDH@NF. The utilization of the p–n junction concept will disclose a new strategy for modifying the electronic structure of the catalytically inactive basal plane and stimulating its electrocatalytic activity.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403722\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403722","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

非贵金属基二维材料在氧进化反应(OER)中表现出了良好的电催化活性。然而,二维材料的催化活性位点主要分布在边缘,其大部分基底平面仍然没有催化活性,这成为影响催化效率的一个重大缺陷。本文提出了一种新型 p-n 异质结策略,在二维镍铁层双氢氧化物(NiFe-LDH)的基底面上产生活性位点。首先在泡沫镍(NF)衬底上生长出 n 型 NiFe-LDH,然后通过简单的浸涂方法沉积出 p 型 Co3O4 纳米立方体,从而制造出 Co3O4/NiFe-LDH@NF p-n 异质结电极。结果,在 p 型 Co3O4 和 n 型 NiFe-LDH 的界面上诱导了电子转移,从而促进了 NiFe-LDH 惰性基底面上的惰性 Ni2+ 态氧化为催化活性更强的 Ni3+ 态。As 制备的 Co3O4/NiFe-LDH@NF 电极获得了更高的 OER 性能,在 1.48 V 时的电流密度高达 100 mA cm-2(相对于 RHE),优于原始 NiFe-LDH@NF 电极。p-n 结概念的利用将为改变催化不活跃基底面的电子结构和激发其电催化活性提供一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activation of Hidden Catalytic Sites in 2D Basal Plane via p–n Heterojunction Interface Engineering Toward Efficient Oxygen Evolution Reaction
Nonprecious metal‐based 2D materials have shown promising electrocatalytic activity toward the oxygen evolution reaction (OER). However, the catalytically active sites of 2D materials are mainly presented at the edge, and most of their basal planes are still catalytically inactive, which turns into a significant drawback on the catalytic efficiency. Here, a novel p–n heterojunction strategy is suggested that generates active sites on the basal plane of 2D NiFe‐layered double hydroxide (NiFe‐LDH). The n‐type NiFe‐LDH is first grown on a nickel foam (NF) substrate, and p‐type Co3O4 nanocubes are deposited through a simple dip‐coating method to fabricate a Co3O4/NiFe‐LDH@NF p–n heterojunction electrode. As a result, electron transfer is induced at the interface of p‐type Co3O4 and n‐type NiFe‐LDH, which consequently promotes oxidation of the inert Ni2+ state to a more catalytically active Ni3+ state on the inert basal plane of NiFe‐LDH. As‐prepared Co3O4/NiFe‐LDH@NF electrodes obtained enhanced OER performance showing a high current density of 100 mA cm−2 at 1.48 V (vs RHE) which outperforms that of pristine NiFe‐LDH@NF. The utilization of the p–n junction concept will disclose a new strategy for modifying the electronic structure of the catalytically inactive basal plane and stimulating its electrocatalytic activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Target-Induced On-Protein Clustering of Metal Peptide Enables Low Overpotential Water Splitting for Early Detection of Non-Small-Cell Lung Cancer Self-Interference Digital Optofluidic Genotyping for Integrated and Automated Label-Free Pathogen Detection SABRE-SHEATH Hyperpolarization of [1,5-13C2]Z-OMPD for Noninvasive pH Sensing. The Cross-Sensitivity of Chemiresistive Gas Sensors: Nature, Methods, and Peculiarities: A Systematic Review. Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1