再论立体匹配中的成本量聚合:差异分类视角

Yun Wang;Longguang Wang;Kunhong Li;Yongjian Zhang;Dapeng Oliver Wu;Yulan Guo
{"title":"再论立体匹配中的成本量聚合:差异分类视角","authors":"Yun Wang;Longguang Wang;Kunhong Li;Yongjian Zhang;Dapeng Oliver Wu;Yulan Guo","doi":"10.1109/TIP.2024.3484251","DOIUrl":null,"url":null,"abstract":"Cost aggregation plays a critical role in existing stereo matching methods. In this paper, we revisit cost aggregation in stereo matching from disparity classification and propose a generic yet efficient Disparity Context Aggregation (DCA) module to improve the performance of CNN-based methods. Our approach is based on an insight that a coarse disparity class prior is beneficial to disparity regression. To obtain such a prior, we first classify pixels in an image into several disparity classes and treat pixels within the same class as homogeneous regions. We then generate homogeneous region representations and incorporate these representations into the cost volume to suppress irrelevant information while enhancing the matching ability for cost aggregation. With the help of homogeneous region representations, efficient and informative cost aggregation can be achieved with only a shallow 3D CNN. Our DCA module is fully-differentiable and well-compatible with different network architectures, which can be seamlessly plugged into existing networks to improve performance with small additional overheads. It is demonstrated that our DCA module can effectively exploit disparity class priors to improve the performance of cost aggregation. Based on our DCA, we design a highly accurate network named DCANet, which achieves state-of-the-art performance on several benchmarks.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6425-6438"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost Volume Aggregation in Stereo Matching Revisited: A Disparity Classification Perspective\",\"authors\":\"Yun Wang;Longguang Wang;Kunhong Li;Yongjian Zhang;Dapeng Oliver Wu;Yulan Guo\",\"doi\":\"10.1109/TIP.2024.3484251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cost aggregation plays a critical role in existing stereo matching methods. In this paper, we revisit cost aggregation in stereo matching from disparity classification and propose a generic yet efficient Disparity Context Aggregation (DCA) module to improve the performance of CNN-based methods. Our approach is based on an insight that a coarse disparity class prior is beneficial to disparity regression. To obtain such a prior, we first classify pixels in an image into several disparity classes and treat pixels within the same class as homogeneous regions. We then generate homogeneous region representations and incorporate these representations into the cost volume to suppress irrelevant information while enhancing the matching ability for cost aggregation. With the help of homogeneous region representations, efficient and informative cost aggregation can be achieved with only a shallow 3D CNN. Our DCA module is fully-differentiable and well-compatible with different network architectures, which can be seamlessly plugged into existing networks to improve performance with small additional overheads. It is demonstrated that our DCA module can effectively exploit disparity class priors to improve the performance of cost aggregation. Based on our DCA, we design a highly accurate network named DCANet, which achieves state-of-the-art performance on several benchmarks.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"6425-6438\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750250/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750250/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成本聚合在现有的立体匹配方法中起着至关重要的作用。在本文中,我们从差异分类的角度重新审视了立体匹配中的成本聚合,并提出了一种通用而高效的差异上下文聚合(DCA)模块,以提高基于 CNN 的方法的性能。我们的方法基于一种见解,即粗略的差异类别先验有利于差异回归。为了获得这样的先验,我们首先将图像中的像素划分为多个差异类别,并将同一类别中的像素视为同质区域。然后,我们生成同质区域表征,并将这些表征纳入成本量,以抑制无关信息,同时增强成本聚合的匹配能力。在同质区域表示法的帮助下,只需一个浅层三维 CNN 就能实现高效且信息丰富的成本汇总。我们的 DCA 模块是完全可变的,与不同的网络架构兼容,可无缝插入现有网络,以较小的额外开销提高性能。实验证明,我们的 DCA 模块可以有效利用差异类先验来提高成本聚合的性能。基于我们的 DCA,我们设计了一个名为 DCANet 的高精度网络,该网络在多个基准测试中取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost Volume Aggregation in Stereo Matching Revisited: A Disparity Classification Perspective
Cost aggregation plays a critical role in existing stereo matching methods. In this paper, we revisit cost aggregation in stereo matching from disparity classification and propose a generic yet efficient Disparity Context Aggregation (DCA) module to improve the performance of CNN-based methods. Our approach is based on an insight that a coarse disparity class prior is beneficial to disparity regression. To obtain such a prior, we first classify pixels in an image into several disparity classes and treat pixels within the same class as homogeneous regions. We then generate homogeneous region representations and incorporate these representations into the cost volume to suppress irrelevant information while enhancing the matching ability for cost aggregation. With the help of homogeneous region representations, efficient and informative cost aggregation can be achieved with only a shallow 3D CNN. Our DCA module is fully-differentiable and well-compatible with different network architectures, which can be seamlessly plugged into existing networks to improve performance with small additional overheads. It is demonstrated that our DCA module can effectively exploit disparity class priors to improve the performance of cost aggregation. Based on our DCA, we design a highly accurate network named DCANet, which achieves state-of-the-art performance on several benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Text-Video Retrieval Performance With Low-Salient but Discriminative Objects Breaking Boundaries: Unifying Imaging and Compression for HDR Image Compression A Pyramid Fusion MLP for Dense Prediction IFENet: Interaction, Fusion, and Enhancement Network for V-D-T Salient Object Detection NeuralDiffuser: Neuroscience-Inspired Diffusion Guidance for fMRI Visual Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1