Keke Shao, Mengjie Song, Xuan Zhang, Chunwen Xu, Yunfeng Wang, Yanxin Hu, Zilong Wang
{"title":"纯水冰冻前沿微尺度气泡捕获和脱离临界条件的力学分析","authors":"Keke Shao, Mengjie Song, Xuan Zhang, Chunwen Xu, Yunfeng Wang, Yanxin Hu, Zilong Wang","doi":"10.1021/acs.langmuir.4c03815","DOIUrl":null,"url":null,"abstract":"Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one method to change the physical properties of ice. To analyze the critical conditions for trapping and detachment of microscale air bubbles on a pure water freezing front, a mathematical model describing the forces on air bubble is developed on the basis of the principle of force equilibrium. Results show that the average accuracy of the present model in predicting the average air bubble detachment radius is about 62%, which is 30% higher than the model with the best prediction accuracy in the literature. Buoyant, temperature gradients, and hydrodynamic forces push air bubbles to detach from the freezing fronts, while adhesion force and gravity impede their detachment. Temperature gradient and adhesion forces are the main factors affecting the detachment of air bubbles from freezing fronts. The temperature gradient has the greatest effect on the air bubble detachment radius, while the tilt angle and liquid density have a lesser effect. When the temperature gradient is increased from 1000 to 10 000 K/m, the air bubble detachment radius decreases by 37.78%. Studying the forces acting on the air bubbles on the pure water freezing front is an important reference for the production of special ice bodies, phase change cold storage, and de-icing technology.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front\",\"authors\":\"Keke Shao, Mengjie Song, Xuan Zhang, Chunwen Xu, Yunfeng Wang, Yanxin Hu, Zilong Wang\",\"doi\":\"10.1021/acs.langmuir.4c03815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one method to change the physical properties of ice. To analyze the critical conditions for trapping and detachment of microscale air bubbles on a pure water freezing front, a mathematical model describing the forces on air bubble is developed on the basis of the principle of force equilibrium. Results show that the average accuracy of the present model in predicting the average air bubble detachment radius is about 62%, which is 30% higher than the model with the best prediction accuracy in the literature. Buoyant, temperature gradients, and hydrodynamic forces push air bubbles to detach from the freezing fronts, while adhesion force and gravity impede their detachment. Temperature gradient and adhesion forces are the main factors affecting the detachment of air bubbles from freezing fronts. The temperature gradient has the greatest effect on the air bubble detachment radius, while the tilt angle and liquid density have a lesser effect. When the temperature gradient is increased from 1000 to 10 000 K/m, the air bubble detachment radius decreases by 37.78%. Studying the forces acting on the air bubbles on the pure water freezing front is an important reference for the production of special ice bodies, phase change cold storage, and de-icing technology.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03815\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03815","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front
Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one method to change the physical properties of ice. To analyze the critical conditions for trapping and detachment of microscale air bubbles on a pure water freezing front, a mathematical model describing the forces on air bubble is developed on the basis of the principle of force equilibrium. Results show that the average accuracy of the present model in predicting the average air bubble detachment radius is about 62%, which is 30% higher than the model with the best prediction accuracy in the literature. Buoyant, temperature gradients, and hydrodynamic forces push air bubbles to detach from the freezing fronts, while adhesion force and gravity impede their detachment. Temperature gradient and adhesion forces are the main factors affecting the detachment of air bubbles from freezing fronts. The temperature gradient has the greatest effect on the air bubble detachment radius, while the tilt angle and liquid density have a lesser effect. When the temperature gradient is increased from 1000 to 10 000 K/m, the air bubble detachment radius decreases by 37.78%. Studying the forces acting on the air bubbles on the pure water freezing front is an important reference for the production of special ice bodies, phase change cold storage, and de-icing technology.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).