{"title":"受辐射大鼠胸腺细胞中Ca2+/Mg2+依赖性内切酶激活的可能原因是聚(adp -核糖)聚合酶的抑制。","authors":"P A Nelipovich, L V Nikonova, S R Umansky","doi":"10.1080/09553008814551111","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular mechanism of activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats was studied. Thymocyte nuclei of control and irradiated rats were pre-incubated with NAD under conditions favourable for poly ADP-ribosylation. Pre-incubation results in a decrease in the rate of autolytic DNA digestion by Ca2+/Mg2+-dependent endonuclease of 6-7- and 2-3-fold for control and irradiated animals, respectively. The activity of Ca2+/Mg2+-nuclease extracted from the nuclei pre-incubated with NAD is also considerably decreased. The presence of nicotinamide and thymidine in the preincubation medium prevents the suppression of Ca2+/Mg2+-nuclease activity. In the experiments performed with isolated nuclei and permeabilized thymocytes the synthesis of poly(ADP-ribose) does not significantly change within 1 h after irradiation at a dose of 10 Gy, whereas 2 and 3 h after the exposure it decreases by 35-40 and 45-55 per cent, respectively. The activity of poly(ADP-ribose) glycohydrolase in this period is similar to that in the controls. The average size of the de novo synthesized chains of poly(ADP-ribose) increases from 11 to 17 ADP-ribose units by the second hour after irradiation. Inhibition of poly(ADP-ribose) polymerase in the postirradiation period preceded the internucleosomal fragmentation of chromatin. The results suggest that activation of Ca2+/Mg2+-nuclease in irradiated thymocytes is accounted for by the disturbance of its poly ADP-ribosylation.</p>","PeriodicalId":14254,"journal":{"name":"International journal of radiation biology and related studies in physics, chemistry, and medicine","volume":"53 5","pages":"749-65"},"PeriodicalIF":0.0000,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553008814551111","citationCount":"55","resultStr":"{\"title\":\"Inhibition of poly(ADP-ribose) polymerase as a possible reason for activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats.\",\"authors\":\"P A Nelipovich, L V Nikonova, S R Umansky\",\"doi\":\"10.1080/09553008814551111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecular mechanism of activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats was studied. Thymocyte nuclei of control and irradiated rats were pre-incubated with NAD under conditions favourable for poly ADP-ribosylation. Pre-incubation results in a decrease in the rate of autolytic DNA digestion by Ca2+/Mg2+-dependent endonuclease of 6-7- and 2-3-fold for control and irradiated animals, respectively. The activity of Ca2+/Mg2+-nuclease extracted from the nuclei pre-incubated with NAD is also considerably decreased. The presence of nicotinamide and thymidine in the preincubation medium prevents the suppression of Ca2+/Mg2+-nuclease activity. In the experiments performed with isolated nuclei and permeabilized thymocytes the synthesis of poly(ADP-ribose) does not significantly change within 1 h after irradiation at a dose of 10 Gy, whereas 2 and 3 h after the exposure it decreases by 35-40 and 45-55 per cent, respectively. The activity of poly(ADP-ribose) glycohydrolase in this period is similar to that in the controls. The average size of the de novo synthesized chains of poly(ADP-ribose) increases from 11 to 17 ADP-ribose units by the second hour after irradiation. Inhibition of poly(ADP-ribose) polymerase in the postirradiation period preceded the internucleosomal fragmentation of chromatin. The results suggest that activation of Ca2+/Mg2+-nuclease in irradiated thymocytes is accounted for by the disturbance of its poly ADP-ribosylation.</p>\",\"PeriodicalId\":14254,\"journal\":{\"name\":\"International journal of radiation biology and related studies in physics, chemistry, and medicine\",\"volume\":\"53 5\",\"pages\":\"749-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09553008814551111\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of radiation biology and related studies in physics, chemistry, and medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09553008814551111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology and related studies in physics, chemistry, and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553008814551111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of poly(ADP-ribose) polymerase as a possible reason for activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats.
The molecular mechanism of activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats was studied. Thymocyte nuclei of control and irradiated rats were pre-incubated with NAD under conditions favourable for poly ADP-ribosylation. Pre-incubation results in a decrease in the rate of autolytic DNA digestion by Ca2+/Mg2+-dependent endonuclease of 6-7- and 2-3-fold for control and irradiated animals, respectively. The activity of Ca2+/Mg2+-nuclease extracted from the nuclei pre-incubated with NAD is also considerably decreased. The presence of nicotinamide and thymidine in the preincubation medium prevents the suppression of Ca2+/Mg2+-nuclease activity. In the experiments performed with isolated nuclei and permeabilized thymocytes the synthesis of poly(ADP-ribose) does not significantly change within 1 h after irradiation at a dose of 10 Gy, whereas 2 and 3 h after the exposure it decreases by 35-40 and 45-55 per cent, respectively. The activity of poly(ADP-ribose) glycohydrolase in this period is similar to that in the controls. The average size of the de novo synthesized chains of poly(ADP-ribose) increases from 11 to 17 ADP-ribose units by the second hour after irradiation. Inhibition of poly(ADP-ribose) polymerase in the postirradiation period preceded the internucleosomal fragmentation of chromatin. The results suggest that activation of Ca2+/Mg2+-nuclease in irradiated thymocytes is accounted for by the disturbance of its poly ADP-ribosylation.