Zheng Zhang, Hongye Luo, Xinyuan Zhang, Run Yang, Shili Yan, Qing Yang, Jun Yang
{"title":"模仿细胞外囊泡设计膜嵌合纳米颗粒,用于喷洒诱导基因沉默中的dsRNA递送以保护农作物","authors":"Zheng Zhang, Hongye Luo, Xinyuan Zhang, Run Yang, Shili Yan, Qing Yang, Jun Yang","doi":"10.1021/acsnano.4c06282","DOIUrl":null,"url":null,"abstract":"Spray-induced gene silencing (SIGS) presents a promising RNA interference (RNAi)-based crop protection strategy against eukaryotic phytopathogens. However, the application of SIGS faces challenges, such as the limited uptake of dsRNA by certain pathogens and the instability of dsRNA in the environment. This study introduces innovative biomimetic nanovesicles, called extracellular vesicle (EV) mimetic chimeric nanovesicles (ECNs), assembled from tomato leaf cell membranes and cationic sterosomes via the freeze–thaw method. Similar to the function of EVs in nucleic acid transport between cells, ECNs serve as a hybrid nanosystem to overcome the challenge of delivering exogenous dsRNA in <i>Phytophthora infestans</i>. When applied to SIGS, the superiority of ECNs in crop protection becomes more apparent, including high loading and protection of dsRNA, improved biosafety, and efficient internalization into pathogen and plant cells, all of which significantly enhance the efficacy of RNAi in preventing early infection of <i>P. infestans</i> to susceptible tomato plants. This study demonstrates that ECNs are promising RNA delivery vehicles and will promote the use of SIGS-based RNA pesticides in sustainable agricultural production.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"71 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular Vesicles Mimetic Design of Membrane Chimeric Nanovesicles for dsRNA Delivery in Spray-Induced Gene Silencing for Crop Protection\",\"authors\":\"Zheng Zhang, Hongye Luo, Xinyuan Zhang, Run Yang, Shili Yan, Qing Yang, Jun Yang\",\"doi\":\"10.1021/acsnano.4c06282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spray-induced gene silencing (SIGS) presents a promising RNA interference (RNAi)-based crop protection strategy against eukaryotic phytopathogens. However, the application of SIGS faces challenges, such as the limited uptake of dsRNA by certain pathogens and the instability of dsRNA in the environment. This study introduces innovative biomimetic nanovesicles, called extracellular vesicle (EV) mimetic chimeric nanovesicles (ECNs), assembled from tomato leaf cell membranes and cationic sterosomes via the freeze–thaw method. Similar to the function of EVs in nucleic acid transport between cells, ECNs serve as a hybrid nanosystem to overcome the challenge of delivering exogenous dsRNA in <i>Phytophthora infestans</i>. When applied to SIGS, the superiority of ECNs in crop protection becomes more apparent, including high loading and protection of dsRNA, improved biosafety, and efficient internalization into pathogen and plant cells, all of which significantly enhance the efficacy of RNAi in preventing early infection of <i>P. infestans</i> to susceptible tomato plants. This study demonstrates that ECNs are promising RNA delivery vehicles and will promote the use of SIGS-based RNA pesticides in sustainable agricultural production.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c06282\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c06282","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Extracellular Vesicles Mimetic Design of Membrane Chimeric Nanovesicles for dsRNA Delivery in Spray-Induced Gene Silencing for Crop Protection
Spray-induced gene silencing (SIGS) presents a promising RNA interference (RNAi)-based crop protection strategy against eukaryotic phytopathogens. However, the application of SIGS faces challenges, such as the limited uptake of dsRNA by certain pathogens and the instability of dsRNA in the environment. This study introduces innovative biomimetic nanovesicles, called extracellular vesicle (EV) mimetic chimeric nanovesicles (ECNs), assembled from tomato leaf cell membranes and cationic sterosomes via the freeze–thaw method. Similar to the function of EVs in nucleic acid transport between cells, ECNs serve as a hybrid nanosystem to overcome the challenge of delivering exogenous dsRNA in Phytophthora infestans. When applied to SIGS, the superiority of ECNs in crop protection becomes more apparent, including high loading and protection of dsRNA, improved biosafety, and efficient internalization into pathogen and plant cells, all of which significantly enhance the efficacy of RNAi in preventing early infection of P. infestans to susceptible tomato plants. This study demonstrates that ECNs are promising RNA delivery vehicles and will promote the use of SIGS-based RNA pesticides in sustainable agricultural production.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.