Mingsong Li, Lee R. Kump, Andy Ridgwell, Jessica E. Tierney, Gregory J. Hakim, Steven B. Malevich, Christopher J. Poulsen, Robert Tardif, Haoxun Zhang, Jiang Zhu
{"title":"古新世-始新世热极盛期海洋 pH 值和碳酸盐饱和度的耦合下降","authors":"Mingsong Li, Lee R. Kump, Andy Ridgwell, Jessica E. Tierney, Gregory J. Hakim, Steven B. Malevich, Christopher J. Poulsen, Robert Tardif, Haoxun Zhang, Jiang Zhu","doi":"10.1038/s41561-024-01579-y","DOIUrl":null,"url":null,"abstract":"The Palaeocene–Eocene Thermal Maximum, a climate event 56 million years ago, was characterized by rapid carbon release and extensive ocean acidification. However, our understanding of acidification and the evolution of ocean saturation states continues to be hindered by considerable uncertainties, primarily stemming from the limited availability of proxy data. Under such conditions, data assimilation allows for an internally consistent assessment of atmospheric CO2 changes, ocean acidification and carbonate saturation state during this period. Here, we present a reconstruction of the Palaeocene–Eocene Thermal Maximum carbon cycle perturbation by assimilating seafloor sediment CaCO3 and sea surface temperature proxy data with simulations from an Earth system model, which includes a comprehensive carbonate system. Our reconstructions indicate a substantial increase in atmospheric CO2 from 890 ppm (95% credible interval: 680–1,170 ppm) to 1,980 ppm (1,680–2,280 ppm), coupled with a notable decline in pH (0.46 units, ranging from 0.31 to 0.63 units) and surface-water calcite saturation state, decreasing from 10.2 (7.5–12.8) in the pre-event period to 3.8 (2.8–5.1) during the thermal maximum. Carbonate undersaturation intensified substantially in high-latitude surface waters during the Palaeocene–Eocene Thermal Maximum, paralleling the current decline in Arctic aragonite saturation driven by anthropogenic CO2 emissions. Elevated atmospheric CO2 during the Palaeocene–Eocene Thermal Maximum coincided with substantial declines in the pH and carbonate saturation state of the ocean.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 12","pages":"1299-1305"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum\",\"authors\":\"Mingsong Li, Lee R. Kump, Andy Ridgwell, Jessica E. Tierney, Gregory J. Hakim, Steven B. Malevich, Christopher J. Poulsen, Robert Tardif, Haoxun Zhang, Jiang Zhu\",\"doi\":\"10.1038/s41561-024-01579-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Palaeocene–Eocene Thermal Maximum, a climate event 56 million years ago, was characterized by rapid carbon release and extensive ocean acidification. However, our understanding of acidification and the evolution of ocean saturation states continues to be hindered by considerable uncertainties, primarily stemming from the limited availability of proxy data. Under such conditions, data assimilation allows for an internally consistent assessment of atmospheric CO2 changes, ocean acidification and carbonate saturation state during this period. Here, we present a reconstruction of the Palaeocene–Eocene Thermal Maximum carbon cycle perturbation by assimilating seafloor sediment CaCO3 and sea surface temperature proxy data with simulations from an Earth system model, which includes a comprehensive carbonate system. Our reconstructions indicate a substantial increase in atmospheric CO2 from 890 ppm (95% credible interval: 680–1,170 ppm) to 1,980 ppm (1,680–2,280 ppm), coupled with a notable decline in pH (0.46 units, ranging from 0.31 to 0.63 units) and surface-water calcite saturation state, decreasing from 10.2 (7.5–12.8) in the pre-event period to 3.8 (2.8–5.1) during the thermal maximum. Carbonate undersaturation intensified substantially in high-latitude surface waters during the Palaeocene–Eocene Thermal Maximum, paralleling the current decline in Arctic aragonite saturation driven by anthropogenic CO2 emissions. Elevated atmospheric CO2 during the Palaeocene–Eocene Thermal Maximum coincided with substantial declines in the pH and carbonate saturation state of the ocean.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"17 12\",\"pages\":\"1299-1305\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-024-01579-y\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01579-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum
The Palaeocene–Eocene Thermal Maximum, a climate event 56 million years ago, was characterized by rapid carbon release and extensive ocean acidification. However, our understanding of acidification and the evolution of ocean saturation states continues to be hindered by considerable uncertainties, primarily stemming from the limited availability of proxy data. Under such conditions, data assimilation allows for an internally consistent assessment of atmospheric CO2 changes, ocean acidification and carbonate saturation state during this period. Here, we present a reconstruction of the Palaeocene–Eocene Thermal Maximum carbon cycle perturbation by assimilating seafloor sediment CaCO3 and sea surface temperature proxy data with simulations from an Earth system model, which includes a comprehensive carbonate system. Our reconstructions indicate a substantial increase in atmospheric CO2 from 890 ppm (95% credible interval: 680–1,170 ppm) to 1,980 ppm (1,680–2,280 ppm), coupled with a notable decline in pH (0.46 units, ranging from 0.31 to 0.63 units) and surface-water calcite saturation state, decreasing from 10.2 (7.5–12.8) in the pre-event period to 3.8 (2.8–5.1) during the thermal maximum. Carbonate undersaturation intensified substantially in high-latitude surface waters during the Palaeocene–Eocene Thermal Maximum, paralleling the current decline in Arctic aragonite saturation driven by anthropogenic CO2 emissions. Elevated atmospheric CO2 during the Palaeocene–Eocene Thermal Maximum coincided with substantial declines in the pH and carbonate saturation state of the ocean.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.