羧甲基纤维素诱导的月桂隐球菌可提高葡萄柚的抗病性,并调节苯丙氨酸和活性氧代谢

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-12 DOI:10.1016/j.foodchem.2024.141955
Le Yang, Diantong Ma, Fang Wang, Li Liu, Lin Chen, Xiahong He, Junrong Tang, Jia Deng
{"title":"羧甲基纤维素诱导的月桂隐球菌可提高葡萄柚的抗病性,并调节苯丙氨酸和活性氧代谢","authors":"Le Yang, Diantong Ma, Fang Wang, Li Liu, Lin Chen, Xiahong He, Junrong Tang, Jia Deng","doi":"10.1016/j.foodchem.2024.141955","DOIUrl":null,"url":null,"abstract":"Green mould disease poses a significant threat to the citrus industry. <em>Cryptococcus laurentii</em> can stimulate the fruit defence system, whereas the use of antagonistic yeast alone demonstrates limited efficacy. This study investigated the molecular mechanisms of <em>C. laurentii</em> cultured with carboxymethyl cellulose (CMC<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/><em>C. laurentii</em>), and evaluated the effects of CMC<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/><em>C. laurentii</em> on phenylpropane and reactive oxygen metabolism in grapefruit fruit. Transcriptome analysis revealed that the upregulation of gene expression associated with yeast growth and antagonistic ability occurred in CMC<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/><em>C. laurentii</em> after 72 h cultivation. Meanwhile, CMC<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/><em>C. laurentii</em> reduced lesion diameter and disease incidence in fruit. This treatment promoted phenylpropane metabolism by activating PAL, C4H, 4CL, POD, and PPO and increasing the secondary metabolites. CMC<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/><em>C. laurentii</em> also activated the AsA-GSH cycle, enhanced the activities of SOD and CAT, and reduced the accumulation of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>•-</sup>. The results suggested that CMC<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/><em>C. laurentii</em> maintained high postharvest fruit quality in grapefruit fruit by elevating the phenylpropane and reactive oxygen metabolism.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxymethyl cellulose-induced Cryptococcus laurentii improves disease resistance and regulates phenylpropane and reactive oxygen metabolism in grapefruit\",\"authors\":\"Le Yang, Diantong Ma, Fang Wang, Li Liu, Lin Chen, Xiahong He, Junrong Tang, Jia Deng\",\"doi\":\"10.1016/j.foodchem.2024.141955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green mould disease poses a significant threat to the citrus industry. <em>Cryptococcus laurentii</em> can stimulate the fruit defence system, whereas the use of antagonistic yeast alone demonstrates limited efficacy. This study investigated the molecular mechanisms of <em>C. laurentii</em> cultured with carboxymethyl cellulose (CMC<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/><em>C. laurentii</em>), and evaluated the effects of CMC<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/><em>C. laurentii</em> on phenylpropane and reactive oxygen metabolism in grapefruit fruit. Transcriptome analysis revealed that the upregulation of gene expression associated with yeast growth and antagonistic ability occurred in CMC<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/><em>C. laurentii</em> after 72 h cultivation. Meanwhile, CMC<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/><em>C. laurentii</em> reduced lesion diameter and disease incidence in fruit. This treatment promoted phenylpropane metabolism by activating PAL, C4H, 4CL, POD, and PPO and increasing the secondary metabolites. CMC<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/><em>C. laurentii</em> also activated the AsA-GSH cycle, enhanced the activities of SOD and CAT, and reduced the accumulation of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>•-</sup>. The results suggested that CMC<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/><em>C. laurentii</em> maintained high postharvest fruit quality in grapefruit fruit by elevating the phenylpropane and reactive oxygen metabolism.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.141955\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.141955","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

绿霉病对柑橘产业构成了重大威胁。月桂隐球菌可以刺激果实的防御系统,而单独使用拮抗酵母菌的效果有限。本研究调查了用羧甲基纤维素培养的月桂隐球菌(CMCC.laurentii)的分子机制,并评估了 CMCC.laurentii 对葡萄柚果实中苯丙烷和活性氧代谢的影响。转录组分析表明,经过 72 小时的培养,CMCC.laurentii 中与酵母生长和拮抗能力相关的基因表达出现上调。同时,CMCC.laurentii 降低了果实的病变直径和病害发生率。该处理通过激活 PAL、C4H、4CL、POD 和 PPO 以及增加次生代谢产物来促进苯丙氨酸代谢。月桂酵母菌还能激活 AsA-GSH 循环,提高 SOD 和 CAT 的活性,减少 H2O2 和 O2 的积累。结果表明,CMCC.laurentii 通过提高苯丙氨酸和活性氧代谢,保持了葡萄柚果实采后的高品质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carboxymethyl cellulose-induced Cryptococcus laurentii improves disease resistance and regulates phenylpropane and reactive oxygen metabolism in grapefruit
Green mould disease poses a significant threat to the citrus industry. Cryptococcus laurentii can stimulate the fruit defence system, whereas the use of antagonistic yeast alone demonstrates limited efficacy. This study investigated the molecular mechanisms of C. laurentii cultured with carboxymethyl cellulose (CMCsingle bondC. laurentii), and evaluated the effects of CMCsingle bondC. laurentii on phenylpropane and reactive oxygen metabolism in grapefruit fruit. Transcriptome analysis revealed that the upregulation of gene expression associated with yeast growth and antagonistic ability occurred in CMCsingle bondC. laurentii after 72 h cultivation. Meanwhile, CMCsingle bondC. laurentii reduced lesion diameter and disease incidence in fruit. This treatment promoted phenylpropane metabolism by activating PAL, C4H, 4CL, POD, and PPO and increasing the secondary metabolites. CMCsingle bondC. laurentii also activated the AsA-GSH cycle, enhanced the activities of SOD and CAT, and reduced the accumulation of H2O2 and O2•-. The results suggested that CMCsingle bondC. laurentii maintained high postharvest fruit quality in grapefruit fruit by elevating the phenylpropane and reactive oxygen metabolism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1