通过二维钯纳米网格孔内缘重构大幅增强阴离子交换膜燃料电池和锌-空气电池中的氧还原反应

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-12 DOI:10.1002/adma.202412051
Jiakang Tian, Yanhui Song, Xiaodong Hao, Xudong Wang, Yongqing Shen, Peizhi Liu, Zebin Wei, Ting Liao, Lei Jiang, Junjie Guo, Bingshe Xu, Ziqi Sun
{"title":"通过二维钯纳米网格孔内缘重构大幅增强阴离子交换膜燃料电池和锌-空气电池中的氧还原反应","authors":"Jiakang Tian, Yanhui Song, Xiaodong Hao, Xudong Wang, Yongqing Shen, Peizhi Liu, Zebin Wei, Ting Liao, Lei Jiang, Junjie Guo, Bingshe Xu, Ziqi Sun","doi":"10.1002/adma.202412051","DOIUrl":null,"url":null,"abstract":"Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mg<sub>Pd</sub><sup>−1</sup>, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mg<sub>Pt</sub><sup>−1</sup>) and Pd/C (0.113 A mg<sub>Pd</sub><sup>−1</sup>) at 0.9 V<sub>RHE</sub>. Most significantly, in H<sub>2</sub>-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm<sup>−2</sup>, respectively, compared with 0.54 and 0.13 W cm<sup>−2</sup> of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greatly Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cell and Zn-Air Battery via Hole Inner Edge Reconstruction of 2D Pd Nanomesh\",\"authors\":\"Jiakang Tian, Yanhui Song, Xiaodong Hao, Xudong Wang, Yongqing Shen, Peizhi Liu, Zebin Wei, Ting Liao, Lei Jiang, Junjie Guo, Bingshe Xu, Ziqi Sun\",\"doi\":\"10.1002/adma.202412051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mg<sub>Pd</sub><sup>−1</sup>, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mg<sub>Pt</sub><sup>−1</sup>) and Pd/C (0.113 A mg<sub>Pd</sub><sup>−1</sup>) at 0.9 V<sub>RHE</sub>. Most significantly, in H<sub>2</sub>-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm<sup>−2</sup>, respectively, compared with 0.54 and 0.13 W cm<sup>−2</sup> of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202412051\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在各种可持续能源反应中,铂族金属(PGM)一直是最活跃的催化剂。然而,铂族金属的高成本使得最大限度地提高活性和减少用量成为新兴技术实际应用的当务之急。在此,我们通过一种简单的室温还原方法,以克级产量制造出了一种新型二维钯纳米网状结构,这种结构具有孔内重构边(HIER),具有暴露的高能面和过度拉伸的晶格参数。HIER 增强了钯在电化学氧还原反应(ORR)中的催化性能,在 0.9 VRHE 条件下,钯的质量活度(MA)达到 2.672 A mgPd-1,分别比商业铂/钯(0.096 A mgPt-1)和钯/钯(0.113 A mgPd-1)高出 27.8 倍和 23.6 倍。最重要的是,在 H2- 空气阴离子交换膜燃料电池 (AEMFC) 和锌空气电池 (ZAB) 应用中,这种独特的钯催化剂的峰值功率密度分别为 0.86 W cm-2 和 0.22 W cm-2,远高于商用铂/钯催化剂的 0.54 W cm-2 和 0.13 W cm-2,这表明通过 HIER 工程在电催化剂设计方面开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Greatly Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cell and Zn-Air Battery via Hole Inner Edge Reconstruction of 2D Pd Nanomesh
Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mgPd−1, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mgPt−1) and Pd/C (0.113 A mgPd−1) at 0.9 VRHE. Most significantly, in H2-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm−2, respectively, compared with 0.54 and 0.13 W cm−2 of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
A Stepwise Melting-Polymerizing Molecule for Hydrophobic Grain-Scale Encapsulated Perovskite Solar Cell Highly Responsive Polar Vortices in All-Ferroelectric Heterostructures Photon-Induced Ultrafast Multitemporal Programming of Terahertz Metadevices Assembly of Silicate–Phenolic Network Coatings with Tunable Properties for Controlled Release of Small Molecules Engineering Topological and Chemical Disorder in Pd Sites for Record-Breaking Formic Acid Electrocatalytic Oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1