基于模型的结肠镜检查软生长机器人跟踪控制

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-10-04 DOI:10.1109/TMRB.2024.3474059
Korn Borvorntanajanya;Shen Treratanakulchai;Ferdinando Rodriguez y Rodriguez;Enrico Franco
{"title":"基于模型的结肠镜检查软生长机器人跟踪控制","authors":"Korn Borvorntanajanya;Shen Treratanakulchai;Ferdinando Rodriguez y Rodriguez;Enrico Franco","doi":"10.1109/TMRB.2024.3474059","DOIUrl":null,"url":null,"abstract":"This paper investigates the model based tracking control of soft growing robots with pneumatic actuation that extend according to the principle known as eversion. A model of the system which accounts for the pressure dynamics is presented. A new control law is constructed with a high-order sliding-mode approach and a nonlinear observer is employed to compensate for the effect of external forces. Numerical simulations and experiments demonstrate the effectiveness of the proposed controller compared to our former energy-shaping implementation and to a baseline sliding-mode controller. Experiments with a training phantom demonstrate that the new controller resulted in a reduced peak pressure, approximately 14.8% lower, a reduced tracking error, approximately 4.9% lower RMSE, and a reduced consumption of compressed air, approximately 3.9% lower, compared to a baseline sliding-mode algorithm.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Based Tracking Control of a Soft Growing Robot for Colonoscopy\",\"authors\":\"Korn Borvorntanajanya;Shen Treratanakulchai;Ferdinando Rodriguez y Rodriguez;Enrico Franco\",\"doi\":\"10.1109/TMRB.2024.3474059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the model based tracking control of soft growing robots with pneumatic actuation that extend according to the principle known as eversion. A model of the system which accounts for the pressure dynamics is presented. A new control law is constructed with a high-order sliding-mode approach and a nonlinear observer is employed to compensate for the effect of external forces. Numerical simulations and experiments demonstrate the effectiveness of the proposed controller compared to our former energy-shaping implementation and to a baseline sliding-mode controller. Experiments with a training phantom demonstrate that the new controller resulted in a reduced peak pressure, approximately 14.8% lower, a reduced tracking error, approximately 4.9% lower RMSE, and a reduced consumption of compressed air, approximately 3.9% lower, compared to a baseline sliding-mode algorithm.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705128/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10705128/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于模型的软生长机器人跟踪控制,该机器人带有气动驱动装置,可根据所谓的 "反转 "原理进行伸展。文中提出了一个考虑到压力动态的系统模型。通过高阶滑模方法构建了新的控制法则,并采用非线性观测器来补偿外力的影响。数值模拟和实验证明,与我们之前的能量整形实施方案和基线滑模控制器相比,所提出的控制器非常有效。使用训练模型进行的实验表明,与基线滑动模式算法相比,新控制器降低了峰值压力(约低 14.8%),减少了跟踪误差(约低 4.9% RMSE),降低了压缩空气消耗量(约低 3.9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Based Tracking Control of a Soft Growing Robot for Colonoscopy
This paper investigates the model based tracking control of soft growing robots with pneumatic actuation that extend according to the principle known as eversion. A model of the system which accounts for the pressure dynamics is presented. A new control law is constructed with a high-order sliding-mode approach and a nonlinear observer is employed to compensate for the effect of external forces. Numerical simulations and experiments demonstrate the effectiveness of the proposed controller compared to our former energy-shaping implementation and to a baseline sliding-mode controller. Experiments with a training phantom demonstrate that the new controller resulted in a reduced peak pressure, approximately 14.8% lower, a reduced tracking error, approximately 4.9% lower RMSE, and a reduced consumption of compressed air, approximately 3.9% lower, compared to a baseline sliding-mode algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial Special section on the Hamlyn Symposium 2023—Immersive Tech: The Future of Medicine IEEE Transactions on Medical Robotics and Bionics Publication Information IEEE Transactions on Medical Robotics and Bionics Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1