{"title":"细粒度语义增强的图形对比学习","authors":"Youming Liu;Lin Shu;Chuan Chen;Zibin Zheng","doi":"10.1109/TKDE.2024.3466990","DOIUrl":null,"url":null,"abstract":"Graph contrastive learning defines a contrastive task to pull similar instances close and push dissimilar instances away. It learns discriminative node embeddings without supervised labels, which has aroused increasing attention in the past few years. Nevertheless, existing methods of graph contrastive learning ignore the differences between diverse semantics existed in graphs, which learn coarse-grained node embeddings and lead to sub-optimal performances on downstream tasks. To bridge this gap, we propose a novel \n<bold>F</b>\nine-grained \n<bold>S</b>\nemantics enhanced \n<bold>G</b>\nraph \n<bold>C</b>\nontrastive \n<bold>L</b>\nearning (FSGCL) in this paper. Concretely, FSGCL first introduces a motif-based graph construction, which employs graph motifs to extract diverse semantics existed in graphs from the perspective of input data. Then, the semantic-level contrastive task is explored to further enhance the utilization of fine-grained semantics from the perspective of model training. Experiments on five real-world datasets demonstrate the superiority of our proposed FSGCL over state-of-the-art methods. To make the results reproducible, we will make our codes public on GitHub after this paper is accepted.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8238-8250"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Semantics Enhanced Contrastive Learning for Graphs\",\"authors\":\"Youming Liu;Lin Shu;Chuan Chen;Zibin Zheng\",\"doi\":\"10.1109/TKDE.2024.3466990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph contrastive learning defines a contrastive task to pull similar instances close and push dissimilar instances away. It learns discriminative node embeddings without supervised labels, which has aroused increasing attention in the past few years. Nevertheless, existing methods of graph contrastive learning ignore the differences between diverse semantics existed in graphs, which learn coarse-grained node embeddings and lead to sub-optimal performances on downstream tasks. To bridge this gap, we propose a novel \\n<bold>F</b>\\nine-grained \\n<bold>S</b>\\nemantics enhanced \\n<bold>G</b>\\nraph \\n<bold>C</b>\\nontrastive \\n<bold>L</b>\\nearning (FSGCL) in this paper. Concretely, FSGCL first introduces a motif-based graph construction, which employs graph motifs to extract diverse semantics existed in graphs from the perspective of input data. Then, the semantic-level contrastive task is explored to further enhance the utilization of fine-grained semantics from the perspective of model training. Experiments on five real-world datasets demonstrate the superiority of our proposed FSGCL over state-of-the-art methods. To make the results reproducible, we will make our codes public on GitHub after this paper is accepted.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"8238-8250\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693352/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10693352/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fine-Grained Semantics Enhanced Contrastive Learning for Graphs
Graph contrastive learning defines a contrastive task to pull similar instances close and push dissimilar instances away. It learns discriminative node embeddings without supervised labels, which has aroused increasing attention in the past few years. Nevertheless, existing methods of graph contrastive learning ignore the differences between diverse semantics existed in graphs, which learn coarse-grained node embeddings and lead to sub-optimal performances on downstream tasks. To bridge this gap, we propose a novel
F
ine-grained
S
emantics enhanced
G
raph
C
ontrastive
L
earning (FSGCL) in this paper. Concretely, FSGCL first introduces a motif-based graph construction, which employs graph motifs to extract diverse semantics existed in graphs from the perspective of input data. Then, the semantic-level contrastive task is explored to further enhance the utilization of fine-grained semantics from the perspective of model training. Experiments on five real-world datasets demonstrate the superiority of our proposed FSGCL over state-of-the-art methods. To make the results reproducible, we will make our codes public on GitHub after this paper is accepted.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.