{"title":"利用动态螺旋扫描进行基于光学视网膜显微手术的快速针跟踪","authors":"Pengwei Xu;Mouloud Ourak;Gianni Borghesan;Emmanuel Vander Poorten","doi":"10.1109/TMRB.2024.3464693","DOIUrl":null,"url":null,"abstract":"Retinal microsurgery is crucial for treating various ocular diseases, but challenging due to the structure size, physiological tremor and limited depth perception. This study aims to develop an innovative real-time needle tracking system that utilizes only a small amount of Optical Coherence Tomography (OCT) A-scans. We introduce a spiral scanning pattern, that is dynamically updated to efficiently capture the needle tip and the retina area with 2000 A-scans. An imaging pipeline is proposed that initiates with an initial Region of Interest (ROI) identification, followed by image segmentation, 3D reconstruction, and needle pose estimation. The ROI is dynamically adjusted to keep the needle tip centrally within the spiral scan, facilitating tracking at clinically relevant speeds. Preliminary testing on phantom eye models demonstrated that our system can maintain an average tracking error of 0.04 mm in spatial coordinates and an error of 0.06 mm in estimating the distance between the needle tip and the retina. These results suggest the system’s potential to enhance surgical outcomes by providing surgeons with improved depth perception and precise, real-time feedback. By efficiently utilizing spirally sampled OCT data, this system sets the groundwork for future integrations of real-time 4D imaging and physiological motion detection capabilities.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast OCT-Based Needle Tracking for Retinal Microsurgery Using Dynamic Spiral Scanning\",\"authors\":\"Pengwei Xu;Mouloud Ourak;Gianni Borghesan;Emmanuel Vander Poorten\",\"doi\":\"10.1109/TMRB.2024.3464693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal microsurgery is crucial for treating various ocular diseases, but challenging due to the structure size, physiological tremor and limited depth perception. This study aims to develop an innovative real-time needle tracking system that utilizes only a small amount of Optical Coherence Tomography (OCT) A-scans. We introduce a spiral scanning pattern, that is dynamically updated to efficiently capture the needle tip and the retina area with 2000 A-scans. An imaging pipeline is proposed that initiates with an initial Region of Interest (ROI) identification, followed by image segmentation, 3D reconstruction, and needle pose estimation. The ROI is dynamically adjusted to keep the needle tip centrally within the spiral scan, facilitating tracking at clinically relevant speeds. Preliminary testing on phantom eye models demonstrated that our system can maintain an average tracking error of 0.04 mm in spatial coordinates and an error of 0.06 mm in estimating the distance between the needle tip and the retina. These results suggest the system’s potential to enhance surgical outcomes by providing surgeons with improved depth perception and precise, real-time feedback. By efficiently utilizing spirally sampled OCT data, this system sets the groundwork for future integrations of real-time 4D imaging and physiological motion detection capabilities.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684764/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684764/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
视网膜显微手术对治疗各种眼部疾病至关重要,但由于其结构尺寸、生理震颤和有限的深度知觉而具有挑战性。本研究旨在开发一种创新的实时针跟踪系统,该系统只需利用少量的光学相干断层扫描(OCT)A 扫描图像。我们引入了一种螺旋扫描模式,通过动态更新,以 2000 次 A 扫描有效捕捉针尖和视网膜区域。我们提出了一个成像流水线,首先进行感兴趣区(ROI)识别,然后进行图像分割、三维重建和针尖姿态估计。对感兴趣区进行动态调整,使针尖位于螺旋扫描的中心位置,便于以临床相关的速度进行跟踪。对假眼模型的初步测试表明,我们的系统能将空间坐标的平均跟踪误差保持在 0.04 毫米,将针尖与视网膜之间距离的估计误差保持在 0.06 毫米。这些结果表明,该系统可以为外科医生提供更好的深度感知和精确的实时反馈,从而提高手术效果。通过有效利用螺旋采样 OCT 数据,该系统为未来整合实时 4D 成像和生理运动检测功能奠定了基础。
Fast OCT-Based Needle Tracking for Retinal Microsurgery Using Dynamic Spiral Scanning
Retinal microsurgery is crucial for treating various ocular diseases, but challenging due to the structure size, physiological tremor and limited depth perception. This study aims to develop an innovative real-time needle tracking system that utilizes only a small amount of Optical Coherence Tomography (OCT) A-scans. We introduce a spiral scanning pattern, that is dynamically updated to efficiently capture the needle tip and the retina area with 2000 A-scans. An imaging pipeline is proposed that initiates with an initial Region of Interest (ROI) identification, followed by image segmentation, 3D reconstruction, and needle pose estimation. The ROI is dynamically adjusted to keep the needle tip centrally within the spiral scan, facilitating tracking at clinically relevant speeds. Preliminary testing on phantom eye models demonstrated that our system can maintain an average tracking error of 0.04 mm in spatial coordinates and an error of 0.06 mm in estimating the distance between the needle tip and the retina. These results suggest the system’s potential to enhance surgical outcomes by providing surgeons with improved depth perception and precise, real-time feedback. By efficiently utilizing spirally sampled OCT data, this system sets the groundwork for future integrations of real-time 4D imaging and physiological motion detection capabilities.