在 CLEVERarm 上模拟人类上肢伸展运动轨迹

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-09-19 DOI:10.1109/TMRB.2024.3464097
Kuang Nie;Reza Langari
{"title":"在 CLEVERarm 上模拟人类上肢伸展运动轨迹","authors":"Kuang Nie;Reza Langari","doi":"10.1109/TMRB.2024.3464097","DOIUrl":null,"url":null,"abstract":"Given the significant potential for robot-assisted rehabilitation, developing well-planned trajectories plays a crucial role in enhancing the effectiveness of such rehabilitation methods. A critical aspect of this field, particularly concerning the movement of the human upper limb, is the redundancy resolution. In this study, we introduce a novel trajectory planning method aimed at addressing the redundancy resolution in reaching motions related to Activities of Daily Living (ADL). This method is inspired by prior studies on maximum manipulability while emphasizing the natural upper limb posture, particularly the human preference for maintaining a nearly steady elbow position during ADL movements unless, of course, the range of the desired motion requires otherwise. A trajectory-combining approach is developed for generating trajectories in the human configuration space. Additionally, we present a configuration transformation model for human-robot configuration alignment. Experimental results validate the hypothesis of a steady elbow position and combine features from the Minimum Jerk (MJ) and Minimum Angular Jerk (MAJ) methods, demonstrating more natural reaching motions. The configuration transformation model has been successfully tested on the TAMU CLEVERarm, a lightweight and compact upper limb exoskeleton.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1603-1615"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Human Upper Limb Trajectories for Reaching Motions on CLEVERarm\",\"authors\":\"Kuang Nie;Reza Langari\",\"doi\":\"10.1109/TMRB.2024.3464097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the significant potential for robot-assisted rehabilitation, developing well-planned trajectories plays a crucial role in enhancing the effectiveness of such rehabilitation methods. A critical aspect of this field, particularly concerning the movement of the human upper limb, is the redundancy resolution. In this study, we introduce a novel trajectory planning method aimed at addressing the redundancy resolution in reaching motions related to Activities of Daily Living (ADL). This method is inspired by prior studies on maximum manipulability while emphasizing the natural upper limb posture, particularly the human preference for maintaining a nearly steady elbow position during ADL movements unless, of course, the range of the desired motion requires otherwise. A trajectory-combining approach is developed for generating trajectories in the human configuration space. Additionally, we present a configuration transformation model for human-robot configuration alignment. Experimental results validate the hypothesis of a steady elbow position and combine features from the Minimum Jerk (MJ) and Minimum Angular Jerk (MAJ) methods, demonstrating more natural reaching motions. The configuration transformation model has been successfully tested on the TAMU CLEVERarm, a lightweight and compact upper limb exoskeleton.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"6 4\",\"pages\":\"1603-1615\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684286/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684286/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

鉴于机器人辅助康复的巨大潜力,开发规划良好的运动轨迹对提高此类康复方法的有效性起着至关重要的作用。这一领域的一个关键方面是冗余分辨率,尤其是在人类上肢运动方面。在本研究中,我们介绍了一种新颖的轨迹规划方法,旨在解决与日常生活活动(ADL)相关的伸手动作中的冗余分辨率问题。该方法的灵感来源于之前关于最大可操作性的研究,同时强调了上肢的自然姿势,尤其是人类在 ADL 运动中偏好保持近乎稳定的肘部位置,当然,除非所需运动的范围另有要求。我们开发了一种轨迹组合方法,用于在人体配置空间中生成轨迹。此外,我们还提出了一种用于人机配置对齐的配置转换模型。实验结果验证了稳定肘部位置的假设,并结合了最小抖动(MJ)和最小角度抖动(MAJ)方法的特征,展示了更自然的伸手动作。该配置转换模型已在塔姆大学的 CLEVERarm(一种轻型、紧凑的上肢外骨骼)上成功进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Human Upper Limb Trajectories for Reaching Motions on CLEVERarm
Given the significant potential for robot-assisted rehabilitation, developing well-planned trajectories plays a crucial role in enhancing the effectiveness of such rehabilitation methods. A critical aspect of this field, particularly concerning the movement of the human upper limb, is the redundancy resolution. In this study, we introduce a novel trajectory planning method aimed at addressing the redundancy resolution in reaching motions related to Activities of Daily Living (ADL). This method is inspired by prior studies on maximum manipulability while emphasizing the natural upper limb posture, particularly the human preference for maintaining a nearly steady elbow position during ADL movements unless, of course, the range of the desired motion requires otherwise. A trajectory-combining approach is developed for generating trajectories in the human configuration space. Additionally, we present a configuration transformation model for human-robot configuration alignment. Experimental results validate the hypothesis of a steady elbow position and combine features from the Minimum Jerk (MJ) and Minimum Angular Jerk (MAJ) methods, demonstrating more natural reaching motions. The configuration transformation model has been successfully tested on the TAMU CLEVERarm, a lightweight and compact upper limb exoskeleton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on Medical Robotics and Bionics Vol. 6 Table of Contents IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial Special section on the Hamlyn Symposium 2023—Immersive Tech: The Future of Medicine IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1