{"title":"在金属纳米颗粒上选择性合成荧光金属纳米团簇","authors":"Sheetal Sheetal, Ritika Mittal, Nancy Gupta","doi":"10.1007/s00604-024-06812-4","DOIUrl":null,"url":null,"abstract":"<div><p>Metal nanoparticles and nanoclusters are pivotal in nanomaterial science, each offering unique properties for diverse applications. Nanoclusters, typically smaller than 2 nm, exhibit distinct optical and electronic characteristics due to quantum confinement, resulting in fluorescence emission. In contrast, metal nanoparticles, sized between 2 and 100 nm, exhibit absorption spectra. Both are synthesized by reducing metal precursors in the presence of a suitable stabilizing agent. While nanoparticles have been the historical research focus, recent attention has shifted to nanoclusters for their exceptional properties and their synthesis has evolved significantly over the past few decades. This review discusses the selective synthesis of nanoclusters over nanoparticles, emphasizing the role of various factors such as ligand concentration (metal-to-ligand ratio), reducing agents, pH, reaction time and temperature, solvents, and assistant reagents. Higher ligand concentrations stabilize smaller nanoclusters by preventing aggregation, while lower concentrations lead to larger nanoparticles. Stronger reducing agents produce smaller, more uniform particles, whereas weaker reducing agents yield larger ones. pH affects nanocluster size and emission properties. Solvents and assistant reagents influence reaction kinetics and material properties. Temperature and reaction time also play critical roles in controlling nanocluster size and properties. These insights guide the optimized synthesis of metal nanoclusters, for their specific applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective synthesis of fluorescent metal nanoclusters over metal nanoparticles\",\"authors\":\"Sheetal Sheetal, Ritika Mittal, Nancy Gupta\",\"doi\":\"10.1007/s00604-024-06812-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal nanoparticles and nanoclusters are pivotal in nanomaterial science, each offering unique properties for diverse applications. Nanoclusters, typically smaller than 2 nm, exhibit distinct optical and electronic characteristics due to quantum confinement, resulting in fluorescence emission. In contrast, metal nanoparticles, sized between 2 and 100 nm, exhibit absorption spectra. Both are synthesized by reducing metal precursors in the presence of a suitable stabilizing agent. While nanoparticles have been the historical research focus, recent attention has shifted to nanoclusters for their exceptional properties and their synthesis has evolved significantly over the past few decades. This review discusses the selective synthesis of nanoclusters over nanoparticles, emphasizing the role of various factors such as ligand concentration (metal-to-ligand ratio), reducing agents, pH, reaction time and temperature, solvents, and assistant reagents. Higher ligand concentrations stabilize smaller nanoclusters by preventing aggregation, while lower concentrations lead to larger nanoparticles. Stronger reducing agents produce smaller, more uniform particles, whereas weaker reducing agents yield larger ones. pH affects nanocluster size and emission properties. Solvents and assistant reagents influence reaction kinetics and material properties. Temperature and reaction time also play critical roles in controlling nanocluster size and properties. These insights guide the optimized synthesis of metal nanoclusters, for their specific applications.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 12\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06812-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06812-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Selective synthesis of fluorescent metal nanoclusters over metal nanoparticles
Metal nanoparticles and nanoclusters are pivotal in nanomaterial science, each offering unique properties for diverse applications. Nanoclusters, typically smaller than 2 nm, exhibit distinct optical and electronic characteristics due to quantum confinement, resulting in fluorescence emission. In contrast, metal nanoparticles, sized between 2 and 100 nm, exhibit absorption spectra. Both are synthesized by reducing metal precursors in the presence of a suitable stabilizing agent. While nanoparticles have been the historical research focus, recent attention has shifted to nanoclusters for their exceptional properties and their synthesis has evolved significantly over the past few decades. This review discusses the selective synthesis of nanoclusters over nanoparticles, emphasizing the role of various factors such as ligand concentration (metal-to-ligand ratio), reducing agents, pH, reaction time and temperature, solvents, and assistant reagents. Higher ligand concentrations stabilize smaller nanoclusters by preventing aggregation, while lower concentrations lead to larger nanoparticles. Stronger reducing agents produce smaller, more uniform particles, whereas weaker reducing agents yield larger ones. pH affects nanocluster size and emission properties. Solvents and assistant reagents influence reaction kinetics and material properties. Temperature and reaction time also play critical roles in controlling nanocluster size and properties. These insights guide the optimized synthesis of metal nanoclusters, for their specific applications.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.