一阶相变中的气泡速度和振荡前兆

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2024-11-12 DOI:10.1007/JHEP11(2024)064
Dalila Pîrvu, Matthew C. Johnson, Sergey Sibiryakov
{"title":"一阶相变中的气泡速度和振荡前兆","authors":"Dalila Pîrvu,&nbsp;Matthew C. Johnson,&nbsp;Sergey Sibiryakov","doi":"10.1007/JHEP11(2024)064","DOIUrl":null,"url":null,"abstract":"<p>Metastable ‘false’ vacuum states are an important feature of the Standard Model of particle physics and many theories beyond it. Describing the dynamics of a phase transition out of a false vacuum via the nucleation of bubbles is essential for understanding the cosmology of vacuum decay and the full spectrum of observables. In this paper, we study vacuum decay by numerically evolving ensembles of field theories in 1+1 dimensions from a metastable state. We demonstrate that for an initial Bose-Einstein distribution of fluctuations, bubbles form with a Gaussian spread of center-of-mass velocities and that bubble nucleation events are preceded by an oscillon — a long-lived, time-dependent, pseudo-stable configuration of the field. Defining an effective temperature from the long-wavelength amplitude of fluctuations in the ensemble of simulations, we find good agreement between theoretical finite temperature predictions and empirical measurements of the decay rate, velocity distribution and critical bubble solution. We comment on the generalization of our results and the implications for cosmological observables.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)064.pdf","citationCount":"0","resultStr":"{\"title\":\"Bubble velocities and oscillon precursors in first-order phase transitions\",\"authors\":\"Dalila Pîrvu,&nbsp;Matthew C. Johnson,&nbsp;Sergey Sibiryakov\",\"doi\":\"10.1007/JHEP11(2024)064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metastable ‘false’ vacuum states are an important feature of the Standard Model of particle physics and many theories beyond it. Describing the dynamics of a phase transition out of a false vacuum via the nucleation of bubbles is essential for understanding the cosmology of vacuum decay and the full spectrum of observables. In this paper, we study vacuum decay by numerically evolving ensembles of field theories in 1+1 dimensions from a metastable state. We demonstrate that for an initial Bose-Einstein distribution of fluctuations, bubbles form with a Gaussian spread of center-of-mass velocities and that bubble nucleation events are preceded by an oscillon — a long-lived, time-dependent, pseudo-stable configuration of the field. Defining an effective temperature from the long-wavelength amplitude of fluctuations in the ensemble of simulations, we find good agreement between theoretical finite temperature predictions and empirical measurements of the decay rate, velocity distribution and critical bubble solution. We comment on the generalization of our results and the implications for cosmological observables.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 11\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)064.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP11(2024)064\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)064","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

可蜕变的 "假 "真空态是粒子物理学标准模型及其之外许多理论的一个重要特征。描述通过气泡成核走出假真空的相变动力学,对于理解真空衰变的宇宙学和全部观测指标至关重要。在本文中,我们通过数值演化 1+1 维的场论集合来研究真空衰变。我们证明,对于波动的初始玻色-爱因斯坦分布,气泡的形成与质量中心速度的高斯分布有关,而且气泡成核事件之前会出现振荡子--一种长寿命、随时间变化的伪稳定场构型。根据模拟集合中波动的长波振幅来定义有效温度,我们发现理论有限温度预测与衰变率、速度分布和临界气泡溶液的经验测量之间存在良好的一致性。我们评论了我们结果的概括性以及对宇宙学观测指标的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bubble velocities and oscillon precursors in first-order phase transitions

Metastable ‘false’ vacuum states are an important feature of the Standard Model of particle physics and many theories beyond it. Describing the dynamics of a phase transition out of a false vacuum via the nucleation of bubbles is essential for understanding the cosmology of vacuum decay and the full spectrum of observables. In this paper, we study vacuum decay by numerically evolving ensembles of field theories in 1+1 dimensions from a metastable state. We demonstrate that for an initial Bose-Einstein distribution of fluctuations, bubbles form with a Gaussian spread of center-of-mass velocities and that bubble nucleation events are preceded by an oscillon — a long-lived, time-dependent, pseudo-stable configuration of the field. Defining an effective temperature from the long-wavelength amplitude of fluctuations in the ensemble of simulations, we find good agreement between theoretical finite temperature predictions and empirical measurements of the decay rate, velocity distribution and critical bubble solution. We comment on the generalization of our results and the implications for cosmological observables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
Euclidean wormholes in holographic RG flows Addendum to: Combined analysis of neutrino decoherence at reactor experiments Toward double copy on arbitrary backgrounds Revisiting the minimal Nelson-Barr model Interpretations of the ATLAS measurements of Higgs boson production and decay rates and differential cross-sections in pp collisions at \( \sqrt{s} \) = 13 TeV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1