改良生物炭对土壤中重金属可利用状态的影响研究

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-11-13 DOI:10.1007/s11270-024-07592-6
Haihua Li, Baozeng Xiao, Kaili Jin, Zihan Chen, Lu Yu
{"title":"改良生物炭对土壤中重金属可利用状态的影响研究","authors":"Haihua Li,&nbsp;Baozeng Xiao,&nbsp;Kaili Jin,&nbsp;Zihan Chen,&nbsp;Lu Yu","doi":"10.1007/s11270-024-07592-6","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metal pollution in agricultural soil is a global issue that seriously threatens agricultural production and human health. Biochar has attracted significant attention as an efficient and environmentally friendly material for remediating heavy metal pollution in soil. In this study, biochar (BC) was prepared from tobacco straw and then modified with polyethyleneimine (PEI) using a mixed co-impregnation method to create polyethyleneimine-modified biochar (PBC). The structure and surface properties of BC and PBC were analyzed, and their effects on the physiological characteristics of Chinese cabbage, as well as the accumulation of cadmium and copper in Cd and Cu-contaminated soil, were studied. The results indicated an increase in the pore volume and pore size of the modified BC, with successful impregnation of PEI on the BC surface. The introduction of functional groups, such as amine groups, enhanced the adsorption of biochar. After 70 days of cultivating young plants, the growth status of Chinese cabbage and the soil’s physical and chemical properties were determined. Compared with the control ( CK), when the addition amount of PBC was 3%, the data were analyzed by one-way ANOVA. The indicators with significant changes were as follows: the content of available Cd and Cu in soil decreased by 54.68% and 43.76%, respectively. The plant height and root length of Chinese cabbage increased by 3.1 cm and 3.5 cm, respectively. The fresh and dry weights of leaves increased by 138.07% and 98.3%, respectively. The fresh and dry weights of the roots increased by 107.3% and 140.5%, respectively. The chlorophyll content of the leaves increased by 57.68%. The absorption and accumulation of Cd in roots and leaves decreased by 48.80% and 55.88%, respectively. The absorption and enrichment of Cu in roots and leaves decreased by 33.04% and 43.41%, respectively. The enrichment coefficients of Cd and Cu in Chinese cabbage leaves decreased by 47.45% and 40.92%, respectively, and in roots by 48.80% and 33.04%. In summary, PBC serves as an effective soil heavy metal stabilizer, significantly enhancing the physiological and biochemical indexes of crops in contaminated soil and reducing heavy metal accumulation in crops. This provides a scientific basis and technical support for researching and developing efficient soil heavy metal stabilization materials.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Effect of Modified Biochar on the Available State of Heavy Metals in Soil\",\"authors\":\"Haihua Li,&nbsp;Baozeng Xiao,&nbsp;Kaili Jin,&nbsp;Zihan Chen,&nbsp;Lu Yu\",\"doi\":\"10.1007/s11270-024-07592-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heavy metal pollution in agricultural soil is a global issue that seriously threatens agricultural production and human health. Biochar has attracted significant attention as an efficient and environmentally friendly material for remediating heavy metal pollution in soil. In this study, biochar (BC) was prepared from tobacco straw and then modified with polyethyleneimine (PEI) using a mixed co-impregnation method to create polyethyleneimine-modified biochar (PBC). The structure and surface properties of BC and PBC were analyzed, and their effects on the physiological characteristics of Chinese cabbage, as well as the accumulation of cadmium and copper in Cd and Cu-contaminated soil, were studied. The results indicated an increase in the pore volume and pore size of the modified BC, with successful impregnation of PEI on the BC surface. The introduction of functional groups, such as amine groups, enhanced the adsorption of biochar. After 70 days of cultivating young plants, the growth status of Chinese cabbage and the soil’s physical and chemical properties were determined. Compared with the control ( CK), when the addition amount of PBC was 3%, the data were analyzed by one-way ANOVA. The indicators with significant changes were as follows: the content of available Cd and Cu in soil decreased by 54.68% and 43.76%, respectively. The plant height and root length of Chinese cabbage increased by 3.1 cm and 3.5 cm, respectively. The fresh and dry weights of leaves increased by 138.07% and 98.3%, respectively. The fresh and dry weights of the roots increased by 107.3% and 140.5%, respectively. The chlorophyll content of the leaves increased by 57.68%. The absorption and accumulation of Cd in roots and leaves decreased by 48.80% and 55.88%, respectively. The absorption and enrichment of Cu in roots and leaves decreased by 33.04% and 43.41%, respectively. The enrichment coefficients of Cd and Cu in Chinese cabbage leaves decreased by 47.45% and 40.92%, respectively, and in roots by 48.80% and 33.04%. In summary, PBC serves as an effective soil heavy metal stabilizer, significantly enhancing the physiological and biochemical indexes of crops in contaminated soil and reducing heavy metal accumulation in crops. This provides a scientific basis and technical support for researching and developing efficient soil heavy metal stabilization materials.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07592-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07592-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农业土壤中的重金属污染是一个全球性问题,严重威胁着农业生产和人类健康。生物炭作为一种高效、环保的土壤重金属污染修复材料备受关注。本研究以烟草秸秆为原料制备生物炭(BC),然后采用混合共浸渍法用聚乙烯亚胺(PEI)对其进行改性,制备出聚乙烯亚胺改性生物炭(PBC)。分析了 BC 和 PBC 的结构和表面性质,研究了它们对大白菜生理特性的影响,以及对镉和铜污染土壤中镉和铜积累的影响。结果表明,随着 PEI 成功浸渍到 BC 表面,改性 BC 的孔体积和孔径都有所增加。胺基等官能团的引入增强了生物炭的吸附性。培养幼苗 70 天后,测定了大白菜的生长状况和土壤的理化性质。与对照组(CK)相比,当 PBC 的添加量为 3% 时,数据采用单因素方差分析。变化明显的指标如下:土壤中可利用镉和铜的含量分别降低了 54.68% 和 43.76%。大白菜的株高和根长分别增加了 3.1 厘米和 3.5 厘米。叶片的鲜重和干重分别增加了 138.07% 和 98.3%。根的鲜重和干重分别增加了 107.3% 和 140.5%。叶片的叶绿素含量增加了 57.68%。根和叶对镉的吸收和积累分别减少了 48.80% 和 55.88%。根和叶对铜的吸收和富集分别减少了 33.04% 和 43.41%。大白菜叶片中镉和铜的富集系数分别降低了 47.45% 和 40.92%,根中镉和铜的富集系数分别降低了 48.80% 和 33.04%。综上所述,PBC 是一种有效的土壤重金属稳定剂,能显著提高受污染土壤中作物的生理生化指标,减少重金属在作物体内的积累。这为研究和开发高效的土壤重金属稳定材料提供了科学依据和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Effect of Modified Biochar on the Available State of Heavy Metals in Soil

Heavy metal pollution in agricultural soil is a global issue that seriously threatens agricultural production and human health. Biochar has attracted significant attention as an efficient and environmentally friendly material for remediating heavy metal pollution in soil. In this study, biochar (BC) was prepared from tobacco straw and then modified with polyethyleneimine (PEI) using a mixed co-impregnation method to create polyethyleneimine-modified biochar (PBC). The structure and surface properties of BC and PBC were analyzed, and their effects on the physiological characteristics of Chinese cabbage, as well as the accumulation of cadmium and copper in Cd and Cu-contaminated soil, were studied. The results indicated an increase in the pore volume and pore size of the modified BC, with successful impregnation of PEI on the BC surface. The introduction of functional groups, such as amine groups, enhanced the adsorption of biochar. After 70 days of cultivating young plants, the growth status of Chinese cabbage and the soil’s physical and chemical properties were determined. Compared with the control ( CK), when the addition amount of PBC was 3%, the data were analyzed by one-way ANOVA. The indicators with significant changes were as follows: the content of available Cd and Cu in soil decreased by 54.68% and 43.76%, respectively. The plant height and root length of Chinese cabbage increased by 3.1 cm and 3.5 cm, respectively. The fresh and dry weights of leaves increased by 138.07% and 98.3%, respectively. The fresh and dry weights of the roots increased by 107.3% and 140.5%, respectively. The chlorophyll content of the leaves increased by 57.68%. The absorption and accumulation of Cd in roots and leaves decreased by 48.80% and 55.88%, respectively. The absorption and enrichment of Cu in roots and leaves decreased by 33.04% and 43.41%, respectively. The enrichment coefficients of Cd and Cu in Chinese cabbage leaves decreased by 47.45% and 40.92%, respectively, and in roots by 48.80% and 33.04%. In summary, PBC serves as an effective soil heavy metal stabilizer, significantly enhancing the physiological and biochemical indexes of crops in contaminated soil and reducing heavy metal accumulation in crops. This provides a scientific basis and technical support for researching and developing efficient soil heavy metal stabilization materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Effects of a Common Surfactant Sodium Lauryl Sulfate on Early Life Stages of Two Fish and One Amphibian Species Unlocking Green Solutions: Cellulose as a Lucrative Heavy Metal Adsorbent in Wastewater Treatment-A Comprehensive Review Phosphotungstic Acid to Remarkably Enhance Fe(III)/peroxymonosulfate for the Ultrafast Removal of Organic Pollutants Study on the Effect of Modified Biochar on the Available State of Heavy Metals in Soil Biological effects of glyphosate and emamectin benzoate based pesticides on the freshwater prawn Macrobrachium macrobrachion juveniles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1