Tingting Wang, Lingling Liu, Jie Fang, Hongjian Jin, Sivaraman Natarajan, Heather Sheppard, Meifen Lu, Gregory Turner, Thomas Confer, Melissa Johnson, Jeffrey Steinberg, Larry Ha, Nour Yadak, Richa Jain, David J. Picketts, Xiaotu Ma, Andrew Murphy, Andrew M. Davidoff, Evan S. Glazer, John Easton, Xiang Chen, Ruoning Wang, Jun Yang
{"title":"c-MYC在不同儿茶酚胺能细胞中的条件性激活驱动神经母细胞瘤或体细胞脂肪瘤的发育","authors":"Tingting Wang, Lingling Liu, Jie Fang, Hongjian Jin, Sivaraman Natarajan, Heather Sheppard, Meifen Lu, Gregory Turner, Thomas Confer, Melissa Johnson, Jeffrey Steinberg, Larry Ha, Nour Yadak, Richa Jain, David J. Picketts, Xiaotu Ma, Andrew Murphy, Andrew M. Davidoff, Evan S. Glazer, John Easton, Xiang Chen, Ruoning Wang, Jun Yang","doi":"10.1158/0008-5472.can-24-1142","DOIUrl":null,"url":null,"abstract":"c-MYC is an important driver of high-risk neuroblastoma. A lack of c-MYC–driven genetically engineered mouse models (GEMM) has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and to develop effective therapies. Here, we showed that conditional c-MYC induction via Cre recombinase driven by a tyrosine hydroxylase (Th) promoter led to a preponderance of PDX1+ somatostatinoma, a type of pancreatic neuroendocrine tumor (PNET). However, c-MYC activation via an improved Cre recombinase driven by a dopamine β-hydroxylase (Dbh) promoter resulted in neuroblastoma development. The c-MYC murine neuroblastoma tumors recapitulated the pathologic and genetic features of human neuroblastoma and responded to anti-GD2 immunotherapy and DFMO, an FDA-approved inhibitor targeting the MYC transcriptional target ODC1. Thus, c-MYC overexpression results in different but related tumor types depending on the targeted cell. The GEMMs represent valuable tools for testing immunotherapies and targeted therapies for these diseases.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"35 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional Activation of c-MYC in Distinct Catecholaminergic Cells Drives Development of Neuroblastoma or Somatostatinoma\",\"authors\":\"Tingting Wang, Lingling Liu, Jie Fang, Hongjian Jin, Sivaraman Natarajan, Heather Sheppard, Meifen Lu, Gregory Turner, Thomas Confer, Melissa Johnson, Jeffrey Steinberg, Larry Ha, Nour Yadak, Richa Jain, David J. Picketts, Xiaotu Ma, Andrew Murphy, Andrew M. Davidoff, Evan S. Glazer, John Easton, Xiang Chen, Ruoning Wang, Jun Yang\",\"doi\":\"10.1158/0008-5472.can-24-1142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"c-MYC is an important driver of high-risk neuroblastoma. A lack of c-MYC–driven genetically engineered mouse models (GEMM) has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and to develop effective therapies. Here, we showed that conditional c-MYC induction via Cre recombinase driven by a tyrosine hydroxylase (Th) promoter led to a preponderance of PDX1+ somatostatinoma, a type of pancreatic neuroendocrine tumor (PNET). However, c-MYC activation via an improved Cre recombinase driven by a dopamine β-hydroxylase (Dbh) promoter resulted in neuroblastoma development. The c-MYC murine neuroblastoma tumors recapitulated the pathologic and genetic features of human neuroblastoma and responded to anti-GD2 immunotherapy and DFMO, an FDA-approved inhibitor targeting the MYC transcriptional target ODC1. Thus, c-MYC overexpression results in different but related tumor types depending on the targeted cell. The GEMMs represent valuable tools for testing immunotherapies and targeted therapies for these diseases.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-24-1142\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1142","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Conditional Activation of c-MYC in Distinct Catecholaminergic Cells Drives Development of Neuroblastoma or Somatostatinoma
c-MYC is an important driver of high-risk neuroblastoma. A lack of c-MYC–driven genetically engineered mouse models (GEMM) has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and to develop effective therapies. Here, we showed that conditional c-MYC induction via Cre recombinase driven by a tyrosine hydroxylase (Th) promoter led to a preponderance of PDX1+ somatostatinoma, a type of pancreatic neuroendocrine tumor (PNET). However, c-MYC activation via an improved Cre recombinase driven by a dopamine β-hydroxylase (Dbh) promoter resulted in neuroblastoma development. The c-MYC murine neuroblastoma tumors recapitulated the pathologic and genetic features of human neuroblastoma and responded to anti-GD2 immunotherapy and DFMO, an FDA-approved inhibitor targeting the MYC transcriptional target ODC1. Thus, c-MYC overexpression results in different but related tumor types depending on the targeted cell. The GEMMs represent valuable tools for testing immunotherapies and targeted therapies for these diseases.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.