用于去除金属铌表面化学残留物的分步控制超精密化学蚀刻技术

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-12 DOI:10.1016/j.apsusc.2024.161776
Tao Liu, Shuai Wu, Ziqin Yang, Yang Ye, Jianpeng Li, Guangze Jiang, Hangxu Li, Zepeng Jiang, Lu Li, Shichun Huang, Andong Wu, Yue Tao, Feng Qiu, Teng Tan, Zhijun Wang, Yuan He
{"title":"用于去除金属铌表面化学残留物的分步控制超精密化学蚀刻技术","authors":"Tao Liu, Shuai Wu, Ziqin Yang, Yang Ye, Jianpeng Li, Guangze Jiang, Hangxu Li, Zepeng Jiang, Lu Li, Shichun Huang, Andong Wu, Yue Tao, Feng Qiu, Teng Tan, Zhijun Wang, Yuan He","doi":"10.1016/j.apsusc.2024.161776","DOIUrl":null,"url":null,"abstract":"This work presents a highly precise chemical etching process designed to achieve controlled modulation of the formation and removal of the oxide layer on the surface of niobium (Nb). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) results indicate that the surface attains a saturated oxide layer thickness above 3 nm following treatment with HNO<sub>3</sub>. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results show that the removal efficiency of chemical residue on the Nb surface significantly improves with increased treatment time in HNO<sub>3</sub> and HF. A detailed surface analysis with a 3D optical profiler demonstrates that this method enables uniform etching without compromising the surface flatness of Nb while effectively removing the chemical residues. Electrochemical stability measurements and Vickers hardness tests reveal that cyclic etching exerts minimal impact on the mechanical properties of Nb, while the self-healing characteristics of the surface oxide layer maintain its chemical stability. This method not only advances precision etching for Nb but also opens up the potential for its application in high-performance materials where surface integrity and chemical resilience are paramount.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"1 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Step-controlled ultra-precise chemical etching for removing chemical residues from metallic niobium surfaces\",\"authors\":\"Tao Liu, Shuai Wu, Ziqin Yang, Yang Ye, Jianpeng Li, Guangze Jiang, Hangxu Li, Zepeng Jiang, Lu Li, Shichun Huang, Andong Wu, Yue Tao, Feng Qiu, Teng Tan, Zhijun Wang, Yuan He\",\"doi\":\"10.1016/j.apsusc.2024.161776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a highly precise chemical etching process designed to achieve controlled modulation of the formation and removal of the oxide layer on the surface of niobium (Nb). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) results indicate that the surface attains a saturated oxide layer thickness above 3 nm following treatment with HNO<sub>3</sub>. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results show that the removal efficiency of chemical residue on the Nb surface significantly improves with increased treatment time in HNO<sub>3</sub> and HF. A detailed surface analysis with a 3D optical profiler demonstrates that this method enables uniform etching without compromising the surface flatness of Nb while effectively removing the chemical residues. Electrochemical stability measurements and Vickers hardness tests reveal that cyclic etching exerts minimal impact on the mechanical properties of Nb, while the self-healing characteristics of the surface oxide layer maintain its chemical stability. This method not only advances precision etching for Nb but also opens up the potential for its application in high-performance materials where surface integrity and chemical resilience are paramount.\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsusc.2024.161776\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161776","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种高度精确的化学蚀刻工艺,旨在对铌(Nb)表面氧化层的形成和去除进行可控调节。角度分辨 X 射线光电子能谱(ARXPS)结果表明,经 HNO3 处理后,表面的饱和氧化层厚度超过 3 纳米。扫描电子显微镜(SEM)和 X 射线光电子能谱(XPS)结果表明,随着在 HNO3 和 HF 中处理时间的延长,铌表面化学残留物的去除效率显著提高。利用三维光学轮廓仪进行的详细表面分析表明,这种方法能够在不影响铌表面平整度的情况下实现均匀蚀刻,同时有效去除化学残留物。电化学稳定性测量和维氏硬度测试表明,循环蚀刻对铌的机械性能影响极小,而表面氧化层的自修复特性则保持了其化学稳定性。这种方法不仅推进了铌的精密蚀刻,还为其在表面完整性和化学复原力至关重要的高性能材料中的应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Step-controlled ultra-precise chemical etching for removing chemical residues from metallic niobium surfaces
This work presents a highly precise chemical etching process designed to achieve controlled modulation of the formation and removal of the oxide layer on the surface of niobium (Nb). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) results indicate that the surface attains a saturated oxide layer thickness above 3 nm following treatment with HNO3. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results show that the removal efficiency of chemical residue on the Nb surface significantly improves with increased treatment time in HNO3 and HF. A detailed surface analysis with a 3D optical profiler demonstrates that this method enables uniform etching without compromising the surface flatness of Nb while effectively removing the chemical residues. Electrochemical stability measurements and Vickers hardness tests reveal that cyclic etching exerts minimal impact on the mechanical properties of Nb, while the self-healing characteristics of the surface oxide layer maintain its chemical stability. This method not only advances precision etching for Nb but also opens up the potential for its application in high-performance materials where surface integrity and chemical resilience are paramount.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Ultrathin Ti3C2Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation In-situ homologous bromine vacancies for enhanced C-Br bond activation and rapid debromination of decabromodiphenyl ether Oxygen vacancies-promoted oxidative esterification of ethylene glycol to methyl glycolate over Au/ZnO catalyst Photocatalytic dye removal with ZnO/Laser-Induced graphene nanocomposite Corrigendum to “A comparative nanotribological investigation on amorphous and polycrystalline forms of MoS2” [Appl. Surf. Sci. 672 (2024) 16042]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1