异质结界面工程实现了 Sb2S3 半透明太阳能电池的高透射率和创纪录的效率

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-11-13 DOI:10.1016/j.cej.2024.157646
Muhammad Ishaq, Xuerui Li, Safdar Mehmood, Yi-Ming Zhong, Adil Mansoor, Usman Ali Shah, Shuo Chen, Yuexing Chen, Zhuanghao Zheng, Guangxing Liang
{"title":"异质结界面工程实现了 Sb2S3 半透明太阳能电池的高透射率和创纪录的效率","authors":"Muhammad Ishaq, Xuerui Li, Safdar Mehmood, Yi-Ming Zhong, Adil Mansoor, Usman Ali Shah, Shuo Chen, Yuexing Chen, Zhuanghao Zheng, Guangxing Liang","doi":"10.1016/j.cej.2024.157646","DOIUrl":null,"url":null,"abstract":"Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) is an auspicious contender for semitransparent and tandem solar cells owing to its exceptional optoelectronic characteristics. Yet, complex bulk and heterojunction defects hinder achieving optimal power conversion efficiency (PCE). Although CdS is an established electron transport layer (ETL) in Sb-chalcogenide solar cells benefitting from its exceptional electron mobility (350 cm<sup>2</sup>V<sup>–1</sup>s<sup>−1</sup>) and energy level alignments, its potential contribution has been deplorably overlooked in Sb<sub>2</sub>S<sub>3</sub> semitransparent photovoltaics (STPV). Herein, an optimized TiO<sub>2</sub>/CdS double ETL strategy is embraced to counteract CdS absorption loss and mitigate the “deep cliff” conduction band off-set at TiO<sub>2</sub>/Sb<sub>2</sub>S<sub>3</sub> heterojunction. Subsequently, an evolved chemical bath deposition strategy is proposed to deposit a uniform, faster, and comparatively more transparent Sb<sub>2</sub>S<sub>3</sub> absorber layer. A systematic investigation of the absorber layer and in-depth analysis of carrier dynamics at heterojunctions advocate for the mitigation of charge accumulation and recombination at the interface, thereby pledging superior carrier transport. The advantageous gradient energy band alignment of TiO<sub>2</sub>/CdS/Sb<sub>2</sub>S<sub>3</sub> realized a record PCE of 5.61 % for STPV. Furthermore, the semitransparent device is innovatively employed as a window, enabling transmitted light to be harvested by subsequent Sb<sub>2</sub>S<sub>3</sub> solar cells. It maintains 18 % of its standalone PCE, thereby setting new benchmarks for its practical submissions.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterojunction interface engineering enabling high transmittance and record efficiency in Sb2S3 semitransparent solar cell\",\"authors\":\"Muhammad Ishaq, Xuerui Li, Safdar Mehmood, Yi-Ming Zhong, Adil Mansoor, Usman Ali Shah, Shuo Chen, Yuexing Chen, Zhuanghao Zheng, Guangxing Liang\",\"doi\":\"10.1016/j.cej.2024.157646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) is an auspicious contender for semitransparent and tandem solar cells owing to its exceptional optoelectronic characteristics. Yet, complex bulk and heterojunction defects hinder achieving optimal power conversion efficiency (PCE). Although CdS is an established electron transport layer (ETL) in Sb-chalcogenide solar cells benefitting from its exceptional electron mobility (350 cm<sup>2</sup>V<sup>–1</sup>s<sup>−1</sup>) and energy level alignments, its potential contribution has been deplorably overlooked in Sb<sub>2</sub>S<sub>3</sub> semitransparent photovoltaics (STPV). Herein, an optimized TiO<sub>2</sub>/CdS double ETL strategy is embraced to counteract CdS absorption loss and mitigate the “deep cliff” conduction band off-set at TiO<sub>2</sub>/Sb<sub>2</sub>S<sub>3</sub> heterojunction. Subsequently, an evolved chemical bath deposition strategy is proposed to deposit a uniform, faster, and comparatively more transparent Sb<sub>2</sub>S<sub>3</sub> absorber layer. A systematic investigation of the absorber layer and in-depth analysis of carrier dynamics at heterojunctions advocate for the mitigation of charge accumulation and recombination at the interface, thereby pledging superior carrier transport. The advantageous gradient energy band alignment of TiO<sub>2</sub>/CdS/Sb<sub>2</sub>S<sub>3</sub> realized a record PCE of 5.61 % for STPV. Furthermore, the semitransparent device is innovatively employed as a window, enabling transmitted light to be harvested by subsequent Sb<sub>2</sub>S<sub>3</sub> solar cells. It maintains 18 % of its standalone PCE, thereby setting new benchmarks for its practical submissions.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157646\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157646","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫化锑(Sb2S3)具有卓越的光电特性,是半透明和串联太阳能电池的理想竞争者。然而,复杂的块体和异质结缺陷阻碍了实现最佳功率转换效率(PCE)。虽然 CdS 因其优异的电子迁移率(350 cm2V-1s-1)和能级排列而成为锑镓硒太阳能电池中公认的电子传输层(ETL),但其在 Sb2S3 半透明光伏(STPV)中的潜在贡献却被严重忽视。本文采用优化的 TiO2/CdS 双 ETL 策略来抵消 CdS 吸收损失,并减轻 TiO2/Sb2S3 异质结的 "深崖 "导带偏移。随后,提出了一种进化的化学浴沉积策略,以沉积出均匀、快速和相对更透明的 Sb2S3 吸收层。对吸收层的系统研究以及对异质结中载流子动力学的深入分析,都有助于减少界面上的电荷积累和重组,从而保证优异的载流子传输。TiO2/CdS/Sb2S3 的优势梯度能带排列实现了创纪录的 5.61% 的 STPV PCE。此外,该半透明器件还被创新性地用作窗口,使透射光能够被后续的 Sb2S3 太阳能电池收集。它保持了 18% 的独立 PCE,从而为其实际应用树立了新的标杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterojunction interface engineering enabling high transmittance and record efficiency in Sb2S3 semitransparent solar cell
Antimony sulfide (Sb2S3) is an auspicious contender for semitransparent and tandem solar cells owing to its exceptional optoelectronic characteristics. Yet, complex bulk and heterojunction defects hinder achieving optimal power conversion efficiency (PCE). Although CdS is an established electron transport layer (ETL) in Sb-chalcogenide solar cells benefitting from its exceptional electron mobility (350 cm2V–1s−1) and energy level alignments, its potential contribution has been deplorably overlooked in Sb2S3 semitransparent photovoltaics (STPV). Herein, an optimized TiO2/CdS double ETL strategy is embraced to counteract CdS absorption loss and mitigate the “deep cliff” conduction band off-set at TiO2/Sb2S3 heterojunction. Subsequently, an evolved chemical bath deposition strategy is proposed to deposit a uniform, faster, and comparatively more transparent Sb2S3 absorber layer. A systematic investigation of the absorber layer and in-depth analysis of carrier dynamics at heterojunctions advocate for the mitigation of charge accumulation and recombination at the interface, thereby pledging superior carrier transport. The advantageous gradient energy band alignment of TiO2/CdS/Sb2S3 realized a record PCE of 5.61 % for STPV. Furthermore, the semitransparent device is innovatively employed as a window, enabling transmitted light to be harvested by subsequent Sb2S3 solar cells. It maintains 18 % of its standalone PCE, thereby setting new benchmarks for its practical submissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Dual-doped metalloporphyrin MOFs-based nanoagent increases low-dose radiotherapy efficacy by apoptosis-ferroptosis for hepatocellular carcinoma Heterojunction interface engineering enabling high transmittance and record efficiency in Sb2S3 semitransparent solar cell Insights into a photo-driven laccase coupling system for enhanced photocatalytic oxidation and biodegradation CCL2-scavenging nanodecoy hydrogel multi-step remodel monocytes recruitment and macrophages polarization for periodontitis treatment Scalable and sustainable remediation of OPD-contaminated aquifer via amphipathic multi-component covalent organic polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1