Junpeng Jiang, Liwen Yan, Jiangtao Li, Yunjia Xue, Chensi Zhang, Xiaoxia Hu, Anran Guo, Haiyan Du, Jiachen Liu
{"title":"轻质隔热 SiBCN/Al2O3 陶瓷气凝胶,具有更强的耐高温性能和电磁波吸收性能","authors":"Junpeng Jiang, Liwen Yan, Jiangtao Li, Yunjia Xue, Chensi Zhang, Xiaoxia Hu, Anran Guo, Haiyan Du, Jiachen Liu","doi":"10.1016/j.cej.2024.157656","DOIUrl":null,"url":null,"abstract":"Owing to tunable dielectric properties, light weight and high porosity, polymer-derived SiBCN ceramic aerogels possess significant application prospects in electromagnetic wave (EMW) absorption and thermal insulation. However, due to inadequate oxidation resistance, the structural collapse and performance deterioration of SiBCN aerogels will easily occur in high-temperature aerobic environments, limiting their application. Herein, to address this issue, a novel and straightforward strategy based on typical polymer-derived-ceramic (PDC) aerogel method and impregnation with boehmite sol was proposed for synthesizing SiBCN/Al<sub>2</sub>O<sub>3</sub> composite ceramic aerogels. The microstructure, phase composition, thermal insulation, oxidation resistance and EMW absorption properties of SiBCN/Al<sub>2</sub>O<sub>3</sub> ceramic aerogels were investigated. The resulting SiBCN/Al<sub>2</sub>O<sub>3</sub> composite aerogel demonstrates superior high-temperature structural stability, exhibiting an ultra-low linear shrinkage of only 6.5 % following heat treatment at 1200 °C for 2 h in air. Additionally, the composite aerogel shows a low thermal conductivity of 0.039 W/mK and a low density of 0.112 g/cm<sup>3</sup>. The SiBCN/Al<sub>2</sub>O<sub>3</sub> composite aerogel, composed of dielectric SiBCN, conductive free carbon, and insulating alumina, demonstrates outstanding EMW absorption properties with a minimum reflection loss of −48.6 dB and an effective bandwidth of 5.8 GHz. The enhanced microwave absorption performance is mainly attributed to the improved impedance matching, multiple reflection, and enhanced interfacial polarization resulting from the introduction of Al<sub>2</sub>O<sub>3</sub>. Given prominent oxidation resistance, thermal insulation and EMW absorption properties, the SiBCN/Al<sub>2</sub>O<sub>3</sub> composite aerogel paves the way for developing microwave absorption and thermal insulation integrated material in high-speed vehicles.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"157 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight, thermally insulating SiBCN/Al2O3 ceramic aerogel with enhanced high-temperature resistance and electromagnetic wave absorption performance\",\"authors\":\"Junpeng Jiang, Liwen Yan, Jiangtao Li, Yunjia Xue, Chensi Zhang, Xiaoxia Hu, Anran Guo, Haiyan Du, Jiachen Liu\",\"doi\":\"10.1016/j.cej.2024.157656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to tunable dielectric properties, light weight and high porosity, polymer-derived SiBCN ceramic aerogels possess significant application prospects in electromagnetic wave (EMW) absorption and thermal insulation. However, due to inadequate oxidation resistance, the structural collapse and performance deterioration of SiBCN aerogels will easily occur in high-temperature aerobic environments, limiting their application. Herein, to address this issue, a novel and straightforward strategy based on typical polymer-derived-ceramic (PDC) aerogel method and impregnation with boehmite sol was proposed for synthesizing SiBCN/Al<sub>2</sub>O<sub>3</sub> composite ceramic aerogels. The microstructure, phase composition, thermal insulation, oxidation resistance and EMW absorption properties of SiBCN/Al<sub>2</sub>O<sub>3</sub> ceramic aerogels were investigated. The resulting SiBCN/Al<sub>2</sub>O<sub>3</sub> composite aerogel demonstrates superior high-temperature structural stability, exhibiting an ultra-low linear shrinkage of only 6.5 % following heat treatment at 1200 °C for 2 h in air. Additionally, the composite aerogel shows a low thermal conductivity of 0.039 W/mK and a low density of 0.112 g/cm<sup>3</sup>. The SiBCN/Al<sub>2</sub>O<sub>3</sub> composite aerogel, composed of dielectric SiBCN, conductive free carbon, and insulating alumina, demonstrates outstanding EMW absorption properties with a minimum reflection loss of −48.6 dB and an effective bandwidth of 5.8 GHz. The enhanced microwave absorption performance is mainly attributed to the improved impedance matching, multiple reflection, and enhanced interfacial polarization resulting from the introduction of Al<sub>2</sub>O<sub>3</sub>. Given prominent oxidation resistance, thermal insulation and EMW absorption properties, the SiBCN/Al<sub>2</sub>O<sub>3</sub> composite aerogel paves the way for developing microwave absorption and thermal insulation integrated material in high-speed vehicles.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157656\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157656","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Lightweight, thermally insulating SiBCN/Al2O3 ceramic aerogel with enhanced high-temperature resistance and electromagnetic wave absorption performance
Owing to tunable dielectric properties, light weight and high porosity, polymer-derived SiBCN ceramic aerogels possess significant application prospects in electromagnetic wave (EMW) absorption and thermal insulation. However, due to inadequate oxidation resistance, the structural collapse and performance deterioration of SiBCN aerogels will easily occur in high-temperature aerobic environments, limiting their application. Herein, to address this issue, a novel and straightforward strategy based on typical polymer-derived-ceramic (PDC) aerogel method and impregnation with boehmite sol was proposed for synthesizing SiBCN/Al2O3 composite ceramic aerogels. The microstructure, phase composition, thermal insulation, oxidation resistance and EMW absorption properties of SiBCN/Al2O3 ceramic aerogels were investigated. The resulting SiBCN/Al2O3 composite aerogel demonstrates superior high-temperature structural stability, exhibiting an ultra-low linear shrinkage of only 6.5 % following heat treatment at 1200 °C for 2 h in air. Additionally, the composite aerogel shows a low thermal conductivity of 0.039 W/mK and a low density of 0.112 g/cm3. The SiBCN/Al2O3 composite aerogel, composed of dielectric SiBCN, conductive free carbon, and insulating alumina, demonstrates outstanding EMW absorption properties with a minimum reflection loss of −48.6 dB and an effective bandwidth of 5.8 GHz. The enhanced microwave absorption performance is mainly attributed to the improved impedance matching, multiple reflection, and enhanced interfacial polarization resulting from the introduction of Al2O3. Given prominent oxidation resistance, thermal insulation and EMW absorption properties, the SiBCN/Al2O3 composite aerogel paves the way for developing microwave absorption and thermal insulation integrated material in high-speed vehicles.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.