Haya Khan, V.M. Rajesh, Mahesh K. Ravva, Subhabrata Sen
{"title":"利用实验设计(DoE)优化连续流反应器中的蓝光 LED 光流合成:高效合成多种二芳基酮","authors":"Haya Khan, V.M. Rajesh, Mahesh K. Ravva, Subhabrata Sen","doi":"10.1016/j.cej.2024.157657","DOIUrl":null,"url":null,"abstract":"Herein, we demonstrated the optimization of a blue LED (450 nm) induced C-C bond formation between various aryl and heteroaryl aldehydes with 1,4-quinones at room temperature in ethyl acetate using Design of Experiments (DoE). This reaction was conducted within a flow (micro and milli-fluidic) device using a millifluidic meandering channel reactor (MC2), resulting in a library of diversely substituted diaryl ketones with moderate to good yields. Control experiments and density functional theory (DFT) based computational investigations were performed to elucidate the reaction mechanism.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"19 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of blue LED photo-flow synthesis in continuous flow reactors using design of experiments (DoE): Efficient synthesis of diverse diaryl ketones\",\"authors\":\"Haya Khan, V.M. Rajesh, Mahesh K. Ravva, Subhabrata Sen\",\"doi\":\"10.1016/j.cej.2024.157657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we demonstrated the optimization of a blue LED (450 nm) induced C-C bond formation between various aryl and heteroaryl aldehydes with 1,4-quinones at room temperature in ethyl acetate using Design of Experiments (DoE). This reaction was conducted within a flow (micro and milli-fluidic) device using a millifluidic meandering channel reactor (MC2), resulting in a library of diversely substituted diaryl ketones with moderate to good yields. Control experiments and density functional theory (DFT) based computational investigations were performed to elucidate the reaction mechanism.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157657\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157657","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Optimization of blue LED photo-flow synthesis in continuous flow reactors using design of experiments (DoE): Efficient synthesis of diverse diaryl ketones
Herein, we demonstrated the optimization of a blue LED (450 nm) induced C-C bond formation between various aryl and heteroaryl aldehydes with 1,4-quinones at room temperature in ethyl acetate using Design of Experiments (DoE). This reaction was conducted within a flow (micro and milli-fluidic) device using a millifluidic meandering channel reactor (MC2), resulting in a library of diversely substituted diaryl ketones with moderate to good yields. Control experiments and density functional theory (DFT) based computational investigations were performed to elucidate the reaction mechanism.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.