隧道纳米管实现斑马鱼胚胎细胞间转移

IF 10.7 1区 生物学 Q1 CELL BIOLOGY Developmental cell Pub Date : 2024-11-13 DOI:10.1016/j.devcel.2024.10.016
Olga Korenkova, Shiyu Liu, Inès Prlesi, Anna Pepe, Shahad Albadri, Filippo Del Bene, Chiara Zurzolo
{"title":"隧道纳米管实现斑马鱼胚胎细胞间转移","authors":"Olga Korenkova, Shiyu Liu, Inès Prlesi, Anna Pepe, Shahad Albadri, Filippo Del Bene, Chiara Zurzolo","doi":"10.1016/j.devcel.2024.10.016","DOIUrl":null,"url":null,"abstract":"Tunneling nanotubes (TNTs) are thin intercellular connections that facilitate the transport of diverse cargoes, ranging from ions to organelles. While TNT studies have predominantly been conducted in cell cultures, the existence of open-ended TNTs within live organisms remains unverified. Despite the observation of intercellular connections during embryonic development across various species, their functional role in facilitating material transfer between connected cells has not been confirmed. In this study, we performed mosaic labeling of gastrula cells in zebrafish embryos to demonstrate the coexistence of TNT-like structures alongside other cellular protrusions. These embryonic TNT-like connections exhibited a morphology similar to that of TNTs described in cell culture, appeared to have similar formation mechanisms, and could be induced by Eps8 overexpression and CK666 treatment. Most notably, we demonstrated their capability to transfer both soluble cargoes and organelles, thus confirming their open-endedness. This study demonstrates the existence of functional, open-ended TNTs in a living embryo.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"8 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunneling nanotubes enable intercellular transfer in zebrafish embryos\",\"authors\":\"Olga Korenkova, Shiyu Liu, Inès Prlesi, Anna Pepe, Shahad Albadri, Filippo Del Bene, Chiara Zurzolo\",\"doi\":\"10.1016/j.devcel.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunneling nanotubes (TNTs) are thin intercellular connections that facilitate the transport of diverse cargoes, ranging from ions to organelles. While TNT studies have predominantly been conducted in cell cultures, the existence of open-ended TNTs within live organisms remains unverified. Despite the observation of intercellular connections during embryonic development across various species, their functional role in facilitating material transfer between connected cells has not been confirmed. In this study, we performed mosaic labeling of gastrula cells in zebrafish embryos to demonstrate the coexistence of TNT-like structures alongside other cellular protrusions. These embryonic TNT-like connections exhibited a morphology similar to that of TNTs described in cell culture, appeared to have similar formation mechanisms, and could be induced by Eps8 overexpression and CK666 treatment. Most notably, we demonstrated their capability to transfer both soluble cargoes and organelles, thus confirming their open-endedness. This study demonstrates the existence of functional, open-ended TNTs in a living embryo.\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2024.10.016\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.10.016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

隧道纳米管(TNTs)是一种细长的细胞间连接,可促进从离子到细胞器等各种货物的运输。尽管对 TNT 的研究主要是在细胞培养物中进行的,但在活生物体内是否存在开口的 TNT 仍未得到证实。尽管在不同物种的胚胎发育过程中观察到了细胞间的连接,但它们在促进连接细胞间的物质转移方面的功能作用尚未得到证实。在这项研究中,我们对斑马鱼胚胎的胃管细胞进行了镶嵌标记,以证明 TNT 类结构与其他细胞突起共存。这些胚胎TNT样连接的形态与细胞培养中描述的TNT相似,似乎具有相似的形成机制,并且可由Eps8过表达和CK666处理诱导。最值得注意的是,我们证明了它们转移可溶性货物和细胞器的能力,从而证实了它们的开放性。这项研究证明了在活胚胎中存在功能性开放式TNT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunneling nanotubes enable intercellular transfer in zebrafish embryos
Tunneling nanotubes (TNTs) are thin intercellular connections that facilitate the transport of diverse cargoes, ranging from ions to organelles. While TNT studies have predominantly been conducted in cell cultures, the existence of open-ended TNTs within live organisms remains unverified. Despite the observation of intercellular connections during embryonic development across various species, their functional role in facilitating material transfer between connected cells has not been confirmed. In this study, we performed mosaic labeling of gastrula cells in zebrafish embryos to demonstrate the coexistence of TNT-like structures alongside other cellular protrusions. These embryonic TNT-like connections exhibited a morphology similar to that of TNTs described in cell culture, appeared to have similar formation mechanisms, and could be induced by Eps8 overexpression and CK666 treatment. Most notably, we demonstrated their capability to transfer both soluble cargoes and organelles, thus confirming their open-endedness. This study demonstrates the existence of functional, open-ended TNTs in a living embryo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
期刊最新文献
FZD5 controls intestinal crypt homeostasis and colonic Wnt surrogate agonist response Frizzled5 controls murine intestinal epithelial cell plasticity through organization of chromatin accessibility The cell cycle controls spindle architecture in Arabidopsis by activating the augmin pathway. tRNA-m1A methylation controls the infection of Magnaporthe oryzae by supporting ergosterol biosynthesis. Identification of a non-canonical planar cell polarity pathway triggered by light in the developing mouse retina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1