界面工程化 CuxO@Bi2MoO6 异质结抑制压电筛选效应并促进抗菌治疗的双纳米酶催化作用

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-11-12 DOI:10.1002/smll.202407281
Guiyuan Zhang, Sumei He, Junwu Wei, Pan Ran, Huan Zheng, Long He, Xiaohong Li
{"title":"界面工程化 CuxO@Bi2MoO6 异质结抑制压电筛选效应并促进抗菌治疗的双纳米酶催化作用","authors":"Guiyuan Zhang, Sumei He, Junwu Wei, Pan Ran, Huan Zheng, Long He, Xiaohong Li","doi":"10.1002/smll.202407281","DOIUrl":null,"url":null,"abstract":"Sonodynamic therapy is confronted with the low acoustic efficiency of sonosensitizers, and nanozymes are accompanied by intrinsic low catalytic activity. Herein, to increase the piezopotential of N-type piezoelectric semiconductors, the P-N heterojunction is designed to inhibit the piezoelectric screening effect (PSE) and increase electron utilization efficiency to enhance nanozyme activity. P-type Cu<sub>x</sub>O nanoparticles are in situ grown on N-type piezoelectric Bi<sub>2</sub>MoO<sub>6</sub> (BMO) nanoflakes (NFs) to construct heterostructured Cu<sub>x</sub>O@BMO by interface engineering. Cu<sub>x</sub>O deposition leads to lattice distortion of BMO NFs to improve piezoelectric response, and the strong interface electric field (IEF) suppresses PSE and increases piezopotential. The nonlocal piezopotential, local IEF, and glutathione (GSH) inoculation enhances electron−hole separation and increases peroxidase (POD)-like activity of BMO and GSH oxidase (GSHOx)-like activity of Cu<sub>x</sub>O with high selectivity. The heterojunction formation causes the transfer and rearrangement of interface electrons, and the increased piezopotential accelerates electron transfer at interfaces with bacteria, thus increasing the production of reactive oxidative species and interfering with adenosine triphosphate synthesis. The heterostructured nanozymes produce abundant intracellular ·OH and achieve 4log magnitude reductions in viable bacteria and effective biofilm dispersion. This study elucidates integral mechanisms of nanozyme and acoustic catalysis and opens up a new way to synergize high piezopotential and nanozyme-catalyzed therapy.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"36 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface-Engineered CuxO@Bi2MoO6 Heterojunctions to Inhibit Piezoelectric Screening Effect and Promote Double-Nanozyme Catalysis for Antibacterial Treatment\",\"authors\":\"Guiyuan Zhang, Sumei He, Junwu Wei, Pan Ran, Huan Zheng, Long He, Xiaohong Li\",\"doi\":\"10.1002/smll.202407281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sonodynamic therapy is confronted with the low acoustic efficiency of sonosensitizers, and nanozymes are accompanied by intrinsic low catalytic activity. Herein, to increase the piezopotential of N-type piezoelectric semiconductors, the P-N heterojunction is designed to inhibit the piezoelectric screening effect (PSE) and increase electron utilization efficiency to enhance nanozyme activity. P-type Cu<sub>x</sub>O nanoparticles are in situ grown on N-type piezoelectric Bi<sub>2</sub>MoO<sub>6</sub> (BMO) nanoflakes (NFs) to construct heterostructured Cu<sub>x</sub>O@BMO by interface engineering. Cu<sub>x</sub>O deposition leads to lattice distortion of BMO NFs to improve piezoelectric response, and the strong interface electric field (IEF) suppresses PSE and increases piezopotential. The nonlocal piezopotential, local IEF, and glutathione (GSH) inoculation enhances electron−hole separation and increases peroxidase (POD)-like activity of BMO and GSH oxidase (GSHOx)-like activity of Cu<sub>x</sub>O with high selectivity. The heterojunction formation causes the transfer and rearrangement of interface electrons, and the increased piezopotential accelerates electron transfer at interfaces with bacteria, thus increasing the production of reactive oxidative species and interfering with adenosine triphosphate synthesis. The heterostructured nanozymes produce abundant intracellular ·OH and achieve 4log magnitude reductions in viable bacteria and effective biofilm dispersion. This study elucidates integral mechanisms of nanozyme and acoustic catalysis and opens up a new way to synergize high piezopotential and nanozyme-catalyzed therapy.\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202407281\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407281","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

声动力疗法面临着声敏化剂声效低的问题,而纳米酶又具有内在的低催化活性。在此,为了提高 N 型压电半导体的压电势,设计了 P-N 异质结来抑制压电筛选效应(PSE),提高电子利用效率,从而增强纳米酶的活性。在 N 型压电 Bi2MoO6(BMO)纳米片(NFs)上原位生长 P 型 CuxO 纳米粒子,通过界面工程构建异质结构 CuxO@BMO。CuxO 沉积会导致 BMO NF 的晶格畸变,从而改善压电响应,而强界面电场 (IEF) 则会抑制 PSE 并增加压电势。非局部压电势、局部 IEF 和谷胱甘肽(GSH)的接种增强了电子-空穴分离,并以高选择性提高了 BMO 的过氧化物酶(POD)样活性和 CuxO 的 GSH 氧化酶(GSHOx)样活性。异质结的形成导致了界面电子的转移和重排,压电势的增加加速了与细菌界面的电子转移,从而增加了活性氧化物的产生,干扰了三磷酸腺苷的合成。异质结构纳米酶产生大量细胞内-OH,使存活细菌减少 4log 数量级,并有效分散生物膜。这项研究阐明了纳米酶和声催化的整体机制,为高压电势和纳米酶催化疗法的协同作用开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interface-Engineered CuxO@Bi2MoO6 Heterojunctions to Inhibit Piezoelectric Screening Effect and Promote Double-Nanozyme Catalysis for Antibacterial Treatment
Sonodynamic therapy is confronted with the low acoustic efficiency of sonosensitizers, and nanozymes are accompanied by intrinsic low catalytic activity. Herein, to increase the piezopotential of N-type piezoelectric semiconductors, the P-N heterojunction is designed to inhibit the piezoelectric screening effect (PSE) and increase electron utilization efficiency to enhance nanozyme activity. P-type CuxO nanoparticles are in situ grown on N-type piezoelectric Bi2MoO6 (BMO) nanoflakes (NFs) to construct heterostructured CuxO@BMO by interface engineering. CuxO deposition leads to lattice distortion of BMO NFs to improve piezoelectric response, and the strong interface electric field (IEF) suppresses PSE and increases piezopotential. The nonlocal piezopotential, local IEF, and glutathione (GSH) inoculation enhances electron−hole separation and increases peroxidase (POD)-like activity of BMO and GSH oxidase (GSHOx)-like activity of CuxO with high selectivity. The heterojunction formation causes the transfer and rearrangement of interface electrons, and the increased piezopotential accelerates electron transfer at interfaces with bacteria, thus increasing the production of reactive oxidative species and interfering with adenosine triphosphate synthesis. The heterostructured nanozymes produce abundant intracellular ·OH and achieve 4log magnitude reductions in viable bacteria and effective biofilm dispersion. This study elucidates integral mechanisms of nanozyme and acoustic catalysis and opens up a new way to synergize high piezopotential and nanozyme-catalyzed therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Issue Editorial Masthead Issue Publication Information Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations. Pathological Mutations D169G and P112H Electrostatically Aggravate the Amyloidogenicity of the Functional Domain of TDP-43. Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1