Baiqing Yu, Yanling Xu, Jianliang Nie, Dingfan Li, Zijuan Su, Zhi Huang, Xiaocan Zhang, Weibin Wu, Hai Li, Wuyi Zhou, Wenxu Zheng
{"title":"用于吸附水中铜(II)的电纺亲水性 PAN/CO/TA 复合纳米纤维膜","authors":"Baiqing Yu, Yanling Xu, Jianliang Nie, Dingfan Li, Zijuan Su, Zhi Huang, Xiaocan Zhang, Weibin Wu, Hai Li, Wuyi Zhou, Wenxu Zheng","doi":"10.1016/j.polymer.2024.127829","DOIUrl":null,"url":null,"abstract":"In this paper, a novel polyacrylonitrile (PAN)/collagen (CO)/tannic acid (TA) composite nanofiber membrane for the adsorption of Cu(II) in water was prepared. The nanofibrous membranes were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric (TG), and water contact angle (WCA) techniques, and their adsorption performance on Cu(II) in water was tested. The results showed that incorporating CO improved the hydrophilic performance of the membranes, and the contact angle of PAN/CO decreased from 60.57° to 39.16° with the increase of CO content, which exhibited good hydrophilicity. Moreover, CO effectively crosslinked TA, so that TA was well fixed on the surface of the fiber membrane, and the resulting PAN/CO/TA composite nanofiber membrane had good fiber morphology, uniform fiber diameter distribution, with an average diameter of 292.22 nm, and good adsorption performance for Cu(II), up to 133.26 mg/g. The adsorption kinetics fitting showed that the adsorption mechanism was mainly electrostatic adsorption and chelation of Cu(II) by phenoxy anion. PAN/CO/TA and PAN/CO/TA/Cu nanofiber membranes showed bacteriostatic effects on <em>E. coli</em> and <em>S. aureus</em>, with PAN/CO/TA/Cu nanofiber membranes being particularly effective, with the average inhibition bands for <em>E. coli</em> and <em>S. aureus</em> being 7.50 mm and 10.05 mm, respectively. The distribution of the electric field during the spinning process was also simulated by finite element analysis in this study. Since TA is a natural polymer of plant origin and CO is of animal origin, it provides an environmentally friendly and cost-effective method to remove Cu(II) from water.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"158 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrospun hydrophilic PAN/CO/TA composite nanofibrous membrane for adsorbing Cu(II) in water\",\"authors\":\"Baiqing Yu, Yanling Xu, Jianliang Nie, Dingfan Li, Zijuan Su, Zhi Huang, Xiaocan Zhang, Weibin Wu, Hai Li, Wuyi Zhou, Wenxu Zheng\",\"doi\":\"10.1016/j.polymer.2024.127829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel polyacrylonitrile (PAN)/collagen (CO)/tannic acid (TA) composite nanofiber membrane for the adsorption of Cu(II) in water was prepared. The nanofibrous membranes were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric (TG), and water contact angle (WCA) techniques, and their adsorption performance on Cu(II) in water was tested. The results showed that incorporating CO improved the hydrophilic performance of the membranes, and the contact angle of PAN/CO decreased from 60.57° to 39.16° with the increase of CO content, which exhibited good hydrophilicity. Moreover, CO effectively crosslinked TA, so that TA was well fixed on the surface of the fiber membrane, and the resulting PAN/CO/TA composite nanofiber membrane had good fiber morphology, uniform fiber diameter distribution, with an average diameter of 292.22 nm, and good adsorption performance for Cu(II), up to 133.26 mg/g. The adsorption kinetics fitting showed that the adsorption mechanism was mainly electrostatic adsorption and chelation of Cu(II) by phenoxy anion. PAN/CO/TA and PAN/CO/TA/Cu nanofiber membranes showed bacteriostatic effects on <em>E. coli</em> and <em>S. aureus</em>, with PAN/CO/TA/Cu nanofiber membranes being particularly effective, with the average inhibition bands for <em>E. coli</em> and <em>S. aureus</em> being 7.50 mm and 10.05 mm, respectively. The distribution of the electric field during the spinning process was also simulated by finite element analysis in this study. Since TA is a natural polymer of plant origin and CO is of animal origin, it provides an environmentally friendly and cost-effective method to remove Cu(II) from water.\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.polymer.2024.127829\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127829","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
本文制备了一种新型聚丙烯腈(PAN)/胶原蛋白(CO)/单宁酸(TA)复合纳米纤维膜,用于吸附水中的铜(II)。通过傅立叶变换红外(FTIR)、扫描电子显微镜(SEM)、热重(TG)和水接触角(WCA)技术对纳米纤维膜进行了表征,并测试了它们对水中 Cu(II)的吸附性能。结果表明,CO 的加入提高了膜的亲水性能,随着 CO 含量的增加,PAN/CO 的接触角从 60.57°降至 39.16°,表现出良好的亲水性。此外,CO 能有效交联 TA,使 TA 很好地固定在纤维膜表面,得到的 PAN/CO/TA 复合纳米纤维膜具有良好的纤维形貌,纤维直径分布均匀,平均直径为 292.22 nm,对 Cu(II) 的吸附性能良好,最高可达 133.26 mg/g。吸附动力学拟合结果表明,吸附机理主要是静电吸附和苯氧基阴离子对 Cu(II)的螯合作用。PAN/CO/TA 和 PAN/CO/TA/Cu 纳米纤维膜对大肠杆菌和金黄色葡萄球菌有抑菌作用,其中 PAN/CO/TA/Cu 纳米纤维膜的抑菌效果尤为显著,对大肠杆菌和金黄色葡萄球菌的平均抑菌带分别为 7.50 mm 和 10.05 mm。本研究还通过有限元分析模拟了纺丝过程中的电场分布。由于 TA 是源于植物的天然聚合物,而 CO 是源于动物的天然聚合物,因此它为去除水中的 Cu(II)提供了一种环境友好且经济有效的方法。
Electrospun hydrophilic PAN/CO/TA composite nanofibrous membrane for adsorbing Cu(II) in water
In this paper, a novel polyacrylonitrile (PAN)/collagen (CO)/tannic acid (TA) composite nanofiber membrane for the adsorption of Cu(II) in water was prepared. The nanofibrous membranes were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric (TG), and water contact angle (WCA) techniques, and their adsorption performance on Cu(II) in water was tested. The results showed that incorporating CO improved the hydrophilic performance of the membranes, and the contact angle of PAN/CO decreased from 60.57° to 39.16° with the increase of CO content, which exhibited good hydrophilicity. Moreover, CO effectively crosslinked TA, so that TA was well fixed on the surface of the fiber membrane, and the resulting PAN/CO/TA composite nanofiber membrane had good fiber morphology, uniform fiber diameter distribution, with an average diameter of 292.22 nm, and good adsorption performance for Cu(II), up to 133.26 mg/g. The adsorption kinetics fitting showed that the adsorption mechanism was mainly electrostatic adsorption and chelation of Cu(II) by phenoxy anion. PAN/CO/TA and PAN/CO/TA/Cu nanofiber membranes showed bacteriostatic effects on E. coli and S. aureus, with PAN/CO/TA/Cu nanofiber membranes being particularly effective, with the average inhibition bands for E. coli and S. aureus being 7.50 mm and 10.05 mm, respectively. The distribution of the electric field during the spinning process was also simulated by finite element analysis in this study. Since TA is a natural polymer of plant origin and CO is of animal origin, it provides an environmentally friendly and cost-effective method to remove Cu(II) from water.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.