{"title":"基于两性共聚物的先进功能膜","authors":"Zhuan Yi , Lijing Zhu , Ruiyan Xiong , Chuanjie Fang , Baoku Zhu , Liping Zhu , Hongbo Zeng","doi":"10.1016/j.progpolymsci.2024.101907","DOIUrl":null,"url":null,"abstract":"<div><div>Membranes with advanced and novel functions play important roles in emerging applications ranging from industrial separations, water purification, energy harvesting and storage, healthcare, biomimetic membranes and more. The performance of membranes in these critical applications is fundamentally determined by their interfacial interactions with surrounding ions, molecules, particles, emulsions, and bioactive agents. Amphiphilic copolymers containing both hydrophobic and hydrophilic segments will spontaneously assemble into multiphase and hierarchical structures, providing a general solution for regulating the surface physicochemical properties of membranes used in the aforementioned urgent applications. Controlled synthesis of amphiphilic copolymers and the methods for fabricating membranes from these copolymers with predetermined performance are fundamentally important for their applications. In this work, we first summarize the polymerization techniques for synthesizing amphiphilic copolymers used for membrane materials. We then review the methods for fabricating membranes from amphiphilic copolymers and highlight the urgent applications of advanced functional membranes derived from them. We also discuss some remaining challenges and provide insights into future directions, especially as the circular polymer economy and artificial intelligence are setting new requirements for polymer science. This work offers a comprehensive overview of recent advances in functional materials based on amphiphilic polymers, including the working principles and relationships between polymer structure, processing strategies, and membrane performance, which provides new insights into the development of high-performance and next-generation polymeric membranes through the precise, functionality-driven synthesis of novel amphiphilic copolymers and the controlled fabrication of membranes.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"159 ","pages":"Article 101907"},"PeriodicalIF":26.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced functional membranes based on amphiphilic copolymers\",\"authors\":\"Zhuan Yi , Lijing Zhu , Ruiyan Xiong , Chuanjie Fang , Baoku Zhu , Liping Zhu , Hongbo Zeng\",\"doi\":\"10.1016/j.progpolymsci.2024.101907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Membranes with advanced and novel functions play important roles in emerging applications ranging from industrial separations, water purification, energy harvesting and storage, healthcare, biomimetic membranes and more. The performance of membranes in these critical applications is fundamentally determined by their interfacial interactions with surrounding ions, molecules, particles, emulsions, and bioactive agents. Amphiphilic copolymers containing both hydrophobic and hydrophilic segments will spontaneously assemble into multiphase and hierarchical structures, providing a general solution for regulating the surface physicochemical properties of membranes used in the aforementioned urgent applications. Controlled synthesis of amphiphilic copolymers and the methods for fabricating membranes from these copolymers with predetermined performance are fundamentally important for their applications. In this work, we first summarize the polymerization techniques for synthesizing amphiphilic copolymers used for membrane materials. We then review the methods for fabricating membranes from amphiphilic copolymers and highlight the urgent applications of advanced functional membranes derived from them. We also discuss some remaining challenges and provide insights into future directions, especially as the circular polymer economy and artificial intelligence are setting new requirements for polymer science. This work offers a comprehensive overview of recent advances in functional materials based on amphiphilic polymers, including the working principles and relationships between polymer structure, processing strategies, and membrane performance, which provides new insights into the development of high-performance and next-generation polymeric membranes through the precise, functionality-driven synthesis of novel amphiphilic copolymers and the controlled fabrication of membranes.</div></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"159 \",\"pages\":\"Article 101907\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024001242\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024001242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Advanced functional membranes based on amphiphilic copolymers
Membranes with advanced and novel functions play important roles in emerging applications ranging from industrial separations, water purification, energy harvesting and storage, healthcare, biomimetic membranes and more. The performance of membranes in these critical applications is fundamentally determined by their interfacial interactions with surrounding ions, molecules, particles, emulsions, and bioactive agents. Amphiphilic copolymers containing both hydrophobic and hydrophilic segments will spontaneously assemble into multiphase and hierarchical structures, providing a general solution for regulating the surface physicochemical properties of membranes used in the aforementioned urgent applications. Controlled synthesis of amphiphilic copolymers and the methods for fabricating membranes from these copolymers with predetermined performance are fundamentally important for their applications. In this work, we first summarize the polymerization techniques for synthesizing amphiphilic copolymers used for membrane materials. We then review the methods for fabricating membranes from amphiphilic copolymers and highlight the urgent applications of advanced functional membranes derived from them. We also discuss some remaining challenges and provide insights into future directions, especially as the circular polymer economy and artificial intelligence are setting new requirements for polymer science. This work offers a comprehensive overview of recent advances in functional materials based on amphiphilic polymers, including the working principles and relationships between polymer structure, processing strategies, and membrane performance, which provides new insights into the development of high-performance and next-generation polymeric membranes through the precise, functionality-driven synthesis of novel amphiphilic copolymers and the controlled fabrication of membranes.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.