{"title":"混合配体 Zn-MOF 作为超级电容器电极材料的制备和应用","authors":"Hossein Esfandian, Mohammad Mojtaba Sadeghi","doi":"10.1016/j.electacta.2024.145352","DOIUrl":null,"url":null,"abstract":"In this study, various mixed-linker metal-organic frameworks (MOFs) based on Zn-MOF were successfully synthesized using different ratios of 1,3,5-benzenetricarboxylic acid (BTC) and 1,4-benzenedicarboxylic acid (BDC) as modulator ligands. The characterization results indicated that a lower percentage of BDC ligand effectively enhances the specific surface area of the MOFs while maintaining their microporous structure. Furthermore, the supercapacitive behavior of the synthesized Zn-MOFs with varying mixed ligand ratios was evaluated through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) measurements in a 6 M KOH electrolyte. Synthesized materials, namely MOF-0 (100% BTC), MOF-1 (75% BTC, 25% BDC), MOF-2 (50% BTC, 50% BDC), MOF-3 (25% BTC, 75% BDC), and MOF-4 (100% BDC) were assessed through GCD tests. These tests demonstrated specific capacitance values of 577, 683, 529, 428, and 302 F/g at a current density of 0.5 A/g, respectively. This impressive performance underscores the effectiveness of the mixed-linker strategy in optimizing the electrochemical properties of MOF for energy storage applications.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and application of mixed ligand Zn-MOF as electrode materials for supercapacitors applications\",\"authors\":\"Hossein Esfandian, Mohammad Mojtaba Sadeghi\",\"doi\":\"10.1016/j.electacta.2024.145352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, various mixed-linker metal-organic frameworks (MOFs) based on Zn-MOF were successfully synthesized using different ratios of 1,3,5-benzenetricarboxylic acid (BTC) and 1,4-benzenedicarboxylic acid (BDC) as modulator ligands. The characterization results indicated that a lower percentage of BDC ligand effectively enhances the specific surface area of the MOFs while maintaining their microporous structure. Furthermore, the supercapacitive behavior of the synthesized Zn-MOFs with varying mixed ligand ratios was evaluated through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) measurements in a 6 M KOH electrolyte. Synthesized materials, namely MOF-0 (100% BTC), MOF-1 (75% BTC, 25% BDC), MOF-2 (50% BTC, 50% BDC), MOF-3 (25% BTC, 75% BDC), and MOF-4 (100% BDC) were assessed through GCD tests. These tests demonstrated specific capacitance values of 577, 683, 529, 428, and 302 F/g at a current density of 0.5 A/g, respectively. This impressive performance underscores the effectiveness of the mixed-linker strategy in optimizing the electrochemical properties of MOF for energy storage applications.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145352\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145352","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Preparation and application of mixed ligand Zn-MOF as electrode materials for supercapacitors applications
In this study, various mixed-linker metal-organic frameworks (MOFs) based on Zn-MOF were successfully synthesized using different ratios of 1,3,5-benzenetricarboxylic acid (BTC) and 1,4-benzenedicarboxylic acid (BDC) as modulator ligands. The characterization results indicated that a lower percentage of BDC ligand effectively enhances the specific surface area of the MOFs while maintaining their microporous structure. Furthermore, the supercapacitive behavior of the synthesized Zn-MOFs with varying mixed ligand ratios was evaluated through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) measurements in a 6 M KOH electrolyte. Synthesized materials, namely MOF-0 (100% BTC), MOF-1 (75% BTC, 25% BDC), MOF-2 (50% BTC, 50% BDC), MOF-3 (25% BTC, 75% BDC), and MOF-4 (100% BDC) were assessed through GCD tests. These tests demonstrated specific capacitance values of 577, 683, 529, 428, and 302 F/g at a current density of 0.5 A/g, respectively. This impressive performance underscores the effectiveness of the mixed-linker strategy in optimizing the electrochemical properties of MOF for energy storage applications.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.