J. Nicholas Taylor, Kazuki Bando, Shiori Tsukagoshi, Leo Tanaka, Katsumasa Fujita, Satoshi Fujita
{"title":"利用拉曼高光谱成像和机器学习研究人造奶油涂抹物中的微观水分散和氢键结构","authors":"J. Nicholas Taylor, Kazuki Bando, Shiori Tsukagoshi, Leo Tanaka, Katsumasa Fujita, Satoshi Fujita","doi":"10.1016/j.foodchem.2024.142035","DOIUrl":null,"url":null,"abstract":"Margarine, a water-in-oil (W/O) emulsion, offers advantages such as lower costs in comparison to similar products, but large amounts of saturated fats pose health risks. Reduction of saturated fat content is difficult and often leads to “oil-off,” i.e., the seepage of liquid oil from the mixture, resulting in undesirable appearance and texture. Investigations into the phenomenon have often focused on morphology at the water-oil interfaces, and this work establishes Raman imaging as a powerful application for observing microscopic morphologies of W/O emulsions. We analyze morphologies of 5 distinct margarine spreads that differ in manufacturing date, formulation, and manufacturing process. More robust H-bonding in the oil phase of the emulsions co-occurred with smaller amounts of oil-off, suggesting that H-bonding interactions between emulsifier molecules, water, and crystallized fats in the lipid phase of the W/O emulsions results in an emulsion that is less susceptible to the production of oil-off.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic water dispersion and hydrogen-bonding structures in margarine spreads with Raman hyperspectral imaging and machine learning\",\"authors\":\"J. Nicholas Taylor, Kazuki Bando, Shiori Tsukagoshi, Leo Tanaka, Katsumasa Fujita, Satoshi Fujita\",\"doi\":\"10.1016/j.foodchem.2024.142035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Margarine, a water-in-oil (W/O) emulsion, offers advantages such as lower costs in comparison to similar products, but large amounts of saturated fats pose health risks. Reduction of saturated fat content is difficult and often leads to “oil-off,” i.e., the seepage of liquid oil from the mixture, resulting in undesirable appearance and texture. Investigations into the phenomenon have often focused on morphology at the water-oil interfaces, and this work establishes Raman imaging as a powerful application for observing microscopic morphologies of W/O emulsions. We analyze morphologies of 5 distinct margarine spreads that differ in manufacturing date, formulation, and manufacturing process. More robust H-bonding in the oil phase of the emulsions co-occurred with smaller amounts of oil-off, suggesting that H-bonding interactions between emulsifier molecules, water, and crystallized fats in the lipid phase of the W/O emulsions results in an emulsion that is less susceptible to the production of oil-off.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.142035\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
人造奶油是一种油包水型(W/O)乳状液,与同类产品相比具有成本低等优点,但大量的饱和脂肪会带来健康风险。降低饱和脂肪含量非常困难,而且往往会导致 "脱油 "现象,即液态油从混合物中渗出,造成不良的外观和质地。对这一现象的研究通常集中在水油界面的形态上,而本研究将拉曼成像技术作为观察水包油乳液微观形态的强大应用。我们分析了 5 种不同人造奶油的形态,它们的生产日期、配方和生产工艺各不相同。乳状液油相中更强的 H 键与较少的脱油同时出现,这表明乳化剂分子、水和 W/O 型乳状液脂相中结晶脂肪之间的 H 键相互作用导致乳状液不易产生脱油。
Microscopic water dispersion and hydrogen-bonding structures in margarine spreads with Raman hyperspectral imaging and machine learning
Margarine, a water-in-oil (W/O) emulsion, offers advantages such as lower costs in comparison to similar products, but large amounts of saturated fats pose health risks. Reduction of saturated fat content is difficult and often leads to “oil-off,” i.e., the seepage of liquid oil from the mixture, resulting in undesirable appearance and texture. Investigations into the phenomenon have often focused on morphology at the water-oil interfaces, and this work establishes Raman imaging as a powerful application for observing microscopic morphologies of W/O emulsions. We analyze morphologies of 5 distinct margarine spreads that differ in manufacturing date, formulation, and manufacturing process. More robust H-bonding in the oil phase of the emulsions co-occurred with smaller amounts of oil-off, suggesting that H-bonding interactions between emulsifier molecules, water, and crystallized fats in the lipid phase of the W/O emulsions results in an emulsion that is less susceptible to the production of oil-off.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture