提高电池性能的合理电极设计:解决 SOC 异质性并实现能量密度

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2024-11-13 DOI:10.1002/adfm.202415637
Ziwen Yan, Li Wang, Xiangming He
{"title":"提高电池性能的合理电极设计:解决 SOC 异质性并实现能量密度","authors":"Ziwen Yan, Li Wang, Xiangming He","doi":"10.1002/adfm.202415637","DOIUrl":null,"url":null,"abstract":"The heterogeneity in the state of charge (SOC) across electrodes can significantly abbreviate battery lifespan, deteriorate safety metrics, and diminish capability rate. Despite being a known issue for some time, the factors contributing to this phenomenon have not been systematically summarized. Without a thorough understanding of the underlying causes, it is difficult to devise preventive strategies that can effectively enhance electrode behavior. This paper provides a comprehensive analysis of the factors inducing electrode SOC heterogeneity, identifying the unequal distribution of ions and electrons as the primary cause of the varied reaction rates across the electrode, which ultimately leads to SOC heterogeneity. Subsequently, preventive measures are outlined with a focus on electrode composition and structure. Furthermore, implications of SOC heterogeneity and the challenges associated with achieving both large power density and high energy density in electrodes are discussed. A more profound grasp of the mechanisms governing ion and electron conduction, coupled with materials that can resolve these dilemmas into win–win outcomes, is essential for the advancement of electrodes.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"1 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Electrode Design for Enhanced Battery Performance: Addressing SOC Heterogeneity and Achieving Energy Density\",\"authors\":\"Ziwen Yan, Li Wang, Xiangming He\",\"doi\":\"10.1002/adfm.202415637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heterogeneity in the state of charge (SOC) across electrodes can significantly abbreviate battery lifespan, deteriorate safety metrics, and diminish capability rate. Despite being a known issue for some time, the factors contributing to this phenomenon have not been systematically summarized. Without a thorough understanding of the underlying causes, it is difficult to devise preventive strategies that can effectively enhance electrode behavior. This paper provides a comprehensive analysis of the factors inducing electrode SOC heterogeneity, identifying the unequal distribution of ions and electrons as the primary cause of the varied reaction rates across the electrode, which ultimately leads to SOC heterogeneity. Subsequently, preventive measures are outlined with a focus on electrode composition and structure. Furthermore, implications of SOC heterogeneity and the challenges associated with achieving both large power density and high energy density in electrodes are discussed. A more profound grasp of the mechanisms governing ion and electron conduction, coupled with materials that can resolve these dilemmas into win–win outcomes, is essential for the advancement of electrodes.\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202415637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

不同电极之间的电荷状态(SOC)不均一性会大大缩短电池的使用寿命,降低安全性指标,并减小电池容量。尽管这一问题早已为人所知,但导致这一现象的因素尚未得到系统总结。如果不能透彻了解其根本原因,就很难制定出能有效改善电极性能的预防策略。本文全面分析了诱发电极 SOC 异质性的因素,指出离子和电子分布不均是导致整个电极反应速率不同的主要原因,最终导致 SOC 异质性。随后,以电极组成和结构为重点,概述了预防措施。此外,还讨论了 SOC 异质性的影响以及在电极中实现大功率密度和高能量密度所面临的挑战。更深入地掌握离子和电子传导的机制,再加上能够解决这些难题、实现双赢结果的材料,对电极的发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational Electrode Design for Enhanced Battery Performance: Addressing SOC Heterogeneity and Achieving Energy Density
The heterogeneity in the state of charge (SOC) across electrodes can significantly abbreviate battery lifespan, deteriorate safety metrics, and diminish capability rate. Despite being a known issue for some time, the factors contributing to this phenomenon have not been systematically summarized. Without a thorough understanding of the underlying causes, it is difficult to devise preventive strategies that can effectively enhance electrode behavior. This paper provides a comprehensive analysis of the factors inducing electrode SOC heterogeneity, identifying the unequal distribution of ions and electrons as the primary cause of the varied reaction rates across the electrode, which ultimately leads to SOC heterogeneity. Subsequently, preventive measures are outlined with a focus on electrode composition and structure. Furthermore, implications of SOC heterogeneity and the challenges associated with achieving both large power density and high energy density in electrodes are discussed. A more profound grasp of the mechanisms governing ion and electron conduction, coupled with materials that can resolve these dilemmas into win–win outcomes, is essential for the advancement of electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
Issue Editorial Masthead Highly Alternating Copolymer of [1.1.1]Propellane and Perfluoro Vinyl Ether: Forming a Hydrophobic and Oleophobic Surface with <50% Fluorine Monomer Content. Semiaromatic Polyester-Ethers with Tunable Degradation Profiles. Eutectic Strategy for the Solvent-Free Synthesis of Hydrophobic Cellulosic Cross-Linked Networks with Broad Multifunctional Applications. Poly(arylene ether)s via Cu(II)-Catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1