{"title":"用于高能效可穿戴机器人的可离合织物致动器","authors":"Huapeng Zhang, Herbert Shea","doi":"10.1002/adfm.202415099","DOIUrl":null,"url":null,"abstract":"Energy-efficient yet energy-dense soft actuators are essential for untethered wearable robots. This work reports a fabric-like actuator, combining shape memory alloy (SMA) springs and electrostatic clutches (ESClutches). The SMA springs provide high force density, with only 18 g of materials generating 40 N of force at actuation strains of over 35%, but requiring 78 W of power to hold that strain. The ESClutches cannot generate motion on their own, but can maintain the force and contraction generated by SMAs consuming only a few mW, thus allowing the SMAs to be turned off. By combining SMAs and ESClutches, a soft wearable fabric actuator is developed with force and stroke suited for an upper-limb soft exoskeleton, able to lock in any given position using negligible power. The design is scalable: the number and dimensions of the SMA springs and of the ESClutches can be chosen to meet size and actuator performance requirements. This work reports two wearable use cases, where the combined SMAs and ESClutches consume over 70% lower power than SMAs alone.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"158 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clutchable Fabric Actuator for Energy-Efficient Wearable Robots\",\"authors\":\"Huapeng Zhang, Herbert Shea\",\"doi\":\"10.1002/adfm.202415099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficient yet energy-dense soft actuators are essential for untethered wearable robots. This work reports a fabric-like actuator, combining shape memory alloy (SMA) springs and electrostatic clutches (ESClutches). The SMA springs provide high force density, with only 18 g of materials generating 40 N of force at actuation strains of over 35%, but requiring 78 W of power to hold that strain. The ESClutches cannot generate motion on their own, but can maintain the force and contraction generated by SMAs consuming only a few mW, thus allowing the SMAs to be turned off. By combining SMAs and ESClutches, a soft wearable fabric actuator is developed with force and stroke suited for an upper-limb soft exoskeleton, able to lock in any given position using negligible power. The design is scalable: the number and dimensions of the SMA springs and of the ESClutches can be chosen to meet size and actuator performance requirements. This work reports two wearable use cases, where the combined SMAs and ESClutches consume over 70% lower power than SMAs alone.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202415099\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415099","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
高能效、高能量密度的软致动器对于无系绳可穿戴机器人至关重要。这项研究报告了一种类似织物的致动器,它结合了形状记忆合金(SMA)弹簧和静电离合器(ESClutches)。SMA 弹簧具有很高的力密度,只需 18 克材料就能产生 40 牛顿的力,致动应变超过 35%,但保持该应变需要 78 瓦的功率。ESClutches 本身不能产生运动,但可以维持 SMA 产生的力和收缩,耗电量仅为几毫瓦,因此可以关闭 SMA。通过将 SMA 与 ESClutches 相结合,我们开发出了一种可穿戴软织物致动器,其力和行程适合上肢软外骨骼,能够以可忽略不计的功率锁定在任何给定位置。该设计具有可扩展性:可选择 SMA 弹簧和 ESClutches 的数量和尺寸,以满足尺寸和致动器性能要求。这项工作报告了两个可穿戴使用案例,其中 SMA 和 ESClutches 组合的功耗比单独使用 SMA 低 70% 以上。
Clutchable Fabric Actuator for Energy-Efficient Wearable Robots
Energy-efficient yet energy-dense soft actuators are essential for untethered wearable robots. This work reports a fabric-like actuator, combining shape memory alloy (SMA) springs and electrostatic clutches (ESClutches). The SMA springs provide high force density, with only 18 g of materials generating 40 N of force at actuation strains of over 35%, but requiring 78 W of power to hold that strain. The ESClutches cannot generate motion on their own, but can maintain the force and contraction generated by SMAs consuming only a few mW, thus allowing the SMAs to be turned off. By combining SMAs and ESClutches, a soft wearable fabric actuator is developed with force and stroke suited for an upper-limb soft exoskeleton, able to lock in any given position using negligible power. The design is scalable: the number and dimensions of the SMA springs and of the ESClutches can be chosen to meet size and actuator performance requirements. This work reports two wearable use cases, where the combined SMAs and ESClutches consume over 70% lower power than SMAs alone.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.