Yingli Shan , Feng Cao , Xin Zhao , Jinlong Luo , Haoliang Mei , Limou Zhang , Ying Huang , Yutong Yang , Liangruijie Yan , Yayong Huang , Yong Han , Baolin Guo
{"title":"通过自凝胶止血微片在原位形成的促凝、抗菌和抗氧化高强度多孔水凝胶粘合剂,用于紧急止血和伤口修复。","authors":"Yingli Shan , Feng Cao , Xin Zhao , Jinlong Luo , Haoliang Mei , Limou Zhang , Ying Huang , Yutong Yang , Liangruijie Yan , Yayong Huang , Yong Han , Baolin Guo","doi":"10.1016/j.biomaterials.2024.122936","DOIUrl":null,"url":null,"abstract":"<div><div>Procoagulant, antibacterial and analgesic hemostatic hydrogel dressing with high wet tissue adhesion, ultra-high burst pressure, and easy preparation shows huge promising for rapid hemostasis in emergencies, yet it remains a challenge. Herein, we propose hemostatic microsheets based on quaternized chitosan-g-gallic acid (QCS-GA) and oxidized hyaluronic acid (OHA), which merge the benefits of sponges, hydrogels, and powders for rapid hemostasis and efficient wound healing. Specifically, they exhibit a large specific surface area and excellent hydrophilicity, rapidly absorbing blood and self-gelling through electrostatic interaction and Schiff base crosslinking. And this results in dense, porous hydrogel adhesives with superior mechanical properties, adhesion strength, and ultra-high burst pressure. Furthermore, the microsheets are biocompatible, biodegradable, and possess procoagulant, antibacterial, and antioxidant properties. In mouse and rat liver hemorrhage models, the optimized formulation (QCS-GA + OHA4) demonstrated superior hemostatic effects compared to Celox. In particular, QCS-GA + OHA4 microsheets could stop bleeding quickly from rat femoral artery transection and deliver lidocaine to provide analgesia during emergency treatment. Additionally, they promoted wound healing in mouse full-thickness skin defect wound. These easy-to-manufacture hemostatic microsheets are adaptable to irregular wounds, providing a novel solution for rapid hemostasis and wound healing.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122936"},"PeriodicalIF":12.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Procoagulant, antibacterial and antioxidant high-strength porous hydrogel adhesives in situ formed via self-gelling hemostatic microsheets for emergency hemostasis and wound repair\",\"authors\":\"Yingli Shan , Feng Cao , Xin Zhao , Jinlong Luo , Haoliang Mei , Limou Zhang , Ying Huang , Yutong Yang , Liangruijie Yan , Yayong Huang , Yong Han , Baolin Guo\",\"doi\":\"10.1016/j.biomaterials.2024.122936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Procoagulant, antibacterial and analgesic hemostatic hydrogel dressing with high wet tissue adhesion, ultra-high burst pressure, and easy preparation shows huge promising for rapid hemostasis in emergencies, yet it remains a challenge. Herein, we propose hemostatic microsheets based on quaternized chitosan-g-gallic acid (QCS-GA) and oxidized hyaluronic acid (OHA), which merge the benefits of sponges, hydrogels, and powders for rapid hemostasis and efficient wound healing. Specifically, they exhibit a large specific surface area and excellent hydrophilicity, rapidly absorbing blood and self-gelling through electrostatic interaction and Schiff base crosslinking. And this results in dense, porous hydrogel adhesives with superior mechanical properties, adhesion strength, and ultra-high burst pressure. Furthermore, the microsheets are biocompatible, biodegradable, and possess procoagulant, antibacterial, and antioxidant properties. In mouse and rat liver hemorrhage models, the optimized formulation (QCS-GA + OHA4) demonstrated superior hemostatic effects compared to Celox. In particular, QCS-GA + OHA4 microsheets could stop bleeding quickly from rat femoral artery transection and deliver lidocaine to provide analgesia during emergency treatment. Additionally, they promoted wound healing in mouse full-thickness skin defect wound. These easy-to-manufacture hemostatic microsheets are adaptable to irregular wounds, providing a novel solution for rapid hemostasis and wound healing.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"315 \",\"pages\":\"Article 122936\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014296122400471X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014296122400471X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Procoagulant, antibacterial and antioxidant high-strength porous hydrogel adhesives in situ formed via self-gelling hemostatic microsheets for emergency hemostasis and wound repair
Procoagulant, antibacterial and analgesic hemostatic hydrogel dressing with high wet tissue adhesion, ultra-high burst pressure, and easy preparation shows huge promising for rapid hemostasis in emergencies, yet it remains a challenge. Herein, we propose hemostatic microsheets based on quaternized chitosan-g-gallic acid (QCS-GA) and oxidized hyaluronic acid (OHA), which merge the benefits of sponges, hydrogels, and powders for rapid hemostasis and efficient wound healing. Specifically, they exhibit a large specific surface area and excellent hydrophilicity, rapidly absorbing blood and self-gelling through electrostatic interaction and Schiff base crosslinking. And this results in dense, porous hydrogel adhesives with superior mechanical properties, adhesion strength, and ultra-high burst pressure. Furthermore, the microsheets are biocompatible, biodegradable, and possess procoagulant, antibacterial, and antioxidant properties. In mouse and rat liver hemorrhage models, the optimized formulation (QCS-GA + OHA4) demonstrated superior hemostatic effects compared to Celox. In particular, QCS-GA + OHA4 microsheets could stop bleeding quickly from rat femoral artery transection and deliver lidocaine to provide analgesia during emergency treatment. Additionally, they promoted wound healing in mouse full-thickness skin defect wound. These easy-to-manufacture hemostatic microsheets are adaptable to irregular wounds, providing a novel solution for rapid hemostasis and wound healing.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.