SlbHLH92转录因子通过微调番茄中硫化氢的生物合成来增强抗盐胁迫的能力。

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-11-06 DOI:10.1016/j.ijbiomac.2024.137294
Songchong Lu, Yan Sun, Xin Liu, Fu Wang, Sheng Luan, Hui Wang
{"title":"SlbHLH92转录因子通过微调番茄中硫化氢的生物合成来增强抗盐胁迫的能力。","authors":"Songchong Lu, Yan Sun, Xin Liu, Fu Wang, Sheng Luan, Hui Wang","doi":"10.1016/j.ijbiomac.2024.137294","DOIUrl":null,"url":null,"abstract":"<p><p>Ongoing soil salinization severely hampers plant growth and the sustainability of global crops production. Hydrogen sulfide (H<sub>2</sub>S), acting as a critical gaseous signaling molecule, plays a vital role in plant response to various environmental cues such as salt stress. Nonetheless, it is not well understood how the transcriptional network regulates H<sub>2</sub>S production in response to salt stress in tomato. Herein, we determine that the bHLH transcription factor SlbHLH92 functions as a transcriptional activator in tomato (Solanum lycopersicum L.), upregulating the expression of the L-CYSTEINE DESULFHYDRASE 1 (SlLCD1) gene involved in H<sub>2</sub>S biosynthesis, thereby enhancing the plants' tolerance to salt stress. When exposed to salt stress, overexpression of SlbHLH92 in tomato leads to enhanced salt tolerance compared to wild-type plants. In contrast, suppression of SlbHLH92 expression with RNAi silencing results in increased sensitivity to salt stress. Subsequent molecular and biochemical investigations confirm that the salt-induced SlbHLH92 upregulates the expression of SlLCD1, leading to an increase in H₂S levels, as well as other salt-responsive genes (SlCBL10 and SlVQ16), by directly binding to specific cis-elements in their promoter regions. Furthermore, the VQ-motif containing protein SlVQ16 physically interacts with SlbHLH92, thereby promoting an increase in its transcriptional activity. Taken together, our study reveals an emerging mechanism in which the SlbHLH92-SlVQ16-H<sub>2</sub>S signaling cascade contributes to enhancing salt tolerance in tomato, presenting potential genetic targets for breeding salt-tolerant tomato cultivars.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The SlbHLH92 transcription factor enhances salt stress resilience by fine-tuning hydrogen sulfide biosynthesis in tomato.\",\"authors\":\"Songchong Lu, Yan Sun, Xin Liu, Fu Wang, Sheng Luan, Hui Wang\",\"doi\":\"10.1016/j.ijbiomac.2024.137294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ongoing soil salinization severely hampers plant growth and the sustainability of global crops production. Hydrogen sulfide (H<sub>2</sub>S), acting as a critical gaseous signaling molecule, plays a vital role in plant response to various environmental cues such as salt stress. Nonetheless, it is not well understood how the transcriptional network regulates H<sub>2</sub>S production in response to salt stress in tomato. Herein, we determine that the bHLH transcription factor SlbHLH92 functions as a transcriptional activator in tomato (Solanum lycopersicum L.), upregulating the expression of the L-CYSTEINE DESULFHYDRASE 1 (SlLCD1) gene involved in H<sub>2</sub>S biosynthesis, thereby enhancing the plants' tolerance to salt stress. When exposed to salt stress, overexpression of SlbHLH92 in tomato leads to enhanced salt tolerance compared to wild-type plants. In contrast, suppression of SlbHLH92 expression with RNAi silencing results in increased sensitivity to salt stress. Subsequent molecular and biochemical investigations confirm that the salt-induced SlbHLH92 upregulates the expression of SlLCD1, leading to an increase in H₂S levels, as well as other salt-responsive genes (SlCBL10 and SlVQ16), by directly binding to specific cis-elements in their promoter regions. Furthermore, the VQ-motif containing protein SlVQ16 physically interacts with SlbHLH92, thereby promoting an increase in its transcriptional activity. Taken together, our study reveals an emerging mechanism in which the SlbHLH92-SlVQ16-H<sub>2</sub>S signaling cascade contributes to enhancing salt tolerance in tomato, presenting potential genetic targets for breeding salt-tolerant tomato cultivars.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137294\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137294","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

持续的土壤盐碱化严重阻碍了植物的生长和全球农作物生产的可持续性。硫化氢(H2S)是一种重要的气态信号分子,在植物应对盐胁迫等各种环境因素的过程中发挥着至关重要的作用。然而,人们对转录网络如何调控番茄在应对盐胁迫时 H2S 的产生还不甚了解。在此,我们确定 bHLH 转录因子 SlbHLH92 在番茄(Solanum lycopersicum L.)中发挥转录激活剂的作用,上调参与 H2S 生物合成的 L-CYSTEINE DESULFHYDRASE 1(SlLCD1)基因的表达,从而增强植物对盐胁迫的耐受性。与野生型植株相比,当番茄暴露于盐胁迫时,过表达 SlbHLH92 会增强其耐盐性。相反,通过 RNAi 沉默抑制 SlbHLH92 的表达则会增加对盐胁迫的敏感性。随后的分子和生化研究证实,盐诱导的 SlbHLH92 会上调 SlLCD1 的表达,从而导致 H₂S 水平的增加,同时也会上调其他盐响应基因(SlCBL10 和 SlVQ16)的表达,方法是直接与它们启动子区域的特定顺式元件结合。此外,含有VQ-motif的蛋白质SlVQ16与SlbHLH92发生了物理相互作用,从而促进了其转录活性的提高。综上所述,我们的研究揭示了一种新的机制,即 SlbHLH92-SlVQ16-H2S 信号级联有助于提高番茄的耐盐性,为培育耐盐番茄品种提供了潜在的遗传目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The SlbHLH92 transcription factor enhances salt stress resilience by fine-tuning hydrogen sulfide biosynthesis in tomato.

Ongoing soil salinization severely hampers plant growth and the sustainability of global crops production. Hydrogen sulfide (H2S), acting as a critical gaseous signaling molecule, plays a vital role in plant response to various environmental cues such as salt stress. Nonetheless, it is not well understood how the transcriptional network regulates H2S production in response to salt stress in tomato. Herein, we determine that the bHLH transcription factor SlbHLH92 functions as a transcriptional activator in tomato (Solanum lycopersicum L.), upregulating the expression of the L-CYSTEINE DESULFHYDRASE 1 (SlLCD1) gene involved in H2S biosynthesis, thereby enhancing the plants' tolerance to salt stress. When exposed to salt stress, overexpression of SlbHLH92 in tomato leads to enhanced salt tolerance compared to wild-type plants. In contrast, suppression of SlbHLH92 expression with RNAi silencing results in increased sensitivity to salt stress. Subsequent molecular and biochemical investigations confirm that the salt-induced SlbHLH92 upregulates the expression of SlLCD1, leading to an increase in H₂S levels, as well as other salt-responsive genes (SlCBL10 and SlVQ16), by directly binding to specific cis-elements in their promoter regions. Furthermore, the VQ-motif containing protein SlVQ16 physically interacts with SlbHLH92, thereby promoting an increase in its transcriptional activity. Taken together, our study reveals an emerging mechanism in which the SlbHLH92-SlVQ16-H2S signaling cascade contributes to enhancing salt tolerance in tomato, presenting potential genetic targets for breeding salt-tolerant tomato cultivars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Corrigendum to "Rational intramolecular and interface design of cellulosic paper electrode via PEDOT with AQS as dopant and electrolyte additives" [Int. J. Biol. Macromol. 278 (2024) 134931]. Corrigendum to "Controlled chemical transformation of lignin by nitric acid treatment and carbonization" [Int. J. Biol. Macromol. volume 281, part 4 (2024), 136408]. Hyaluronic acid act as drug self-assembly chaperone and co-assembled with celalstrol for ameliorating non-alcoholic steatohepatitis. Radiation synthesis of high conductivity hydrogel based on tragacanth gum/poly (ionic liquids) for multimodal sensors and supercapacitor. The SlbHLH92 transcription factor enhances salt stress resilience by fine-tuning hydrogen sulfide biosynthesis in tomato.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1