从生物质到电力:耐焦化运行的高性能反应堆设计。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-11-06 DOI:10.1016/j.biortech.2024.131763
Bin Wang , Tong Wang , Dongxu Cui , Tao Li , Rui Xiao
{"title":"从生物质到电力:耐焦化运行的高性能反应堆设计。","authors":"Bin Wang ,&nbsp;Tong Wang ,&nbsp;Dongxu Cui ,&nbsp;Tao Li ,&nbsp;Rui Xiao","doi":"10.1016/j.biortech.2024.131763","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass gasification coupled with solid oxide fuel cell (SOFC) technology utilizes the gas generated from biomass gasification directly as fuel for SOFC, thereby realizing power generation from solid waste. This technology combines the carbon–neutral feature of biomass with the high efficiency and low emissions of SOFC, making it a promising route for clean energy generation. However, biomass gasification syngas possesses a complex composition, including a high concentration of inert gases, which imposes higher requirements on SOFC. This study developed a multi-channel, hierarchical structural design based on the commercial NiO-yttria-stabilized zirconia (YSZ) material system, realizing high-performance power generation using biomass gasification syngas. The results showed that the combination of a unique structural design and an enhanced interface electrochemical reaction effectively mitigates the influence from inert composition dilution. When operating in gasification syngas with nearly 60 % inert components, the power density can reach 2.07 W·cm<sup>−2</sup> (750 °C). In addition, due to the spatial separation of the inert support region and the electrochemically active region, the effect of controlling the position of carbon deposits was achieved, demonstrating 100 h stable operation with dry biomass gasification syngas. Hence, the combination of micro-tubular SOFC with distinctive structural regulation and biomass gasification exhibits promising prospects for further development.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131763"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From biomass to power: High-performance reactor design for coking-resistant operation\",\"authors\":\"Bin Wang ,&nbsp;Tong Wang ,&nbsp;Dongxu Cui ,&nbsp;Tao Li ,&nbsp;Rui Xiao\",\"doi\":\"10.1016/j.biortech.2024.131763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomass gasification coupled with solid oxide fuel cell (SOFC) technology utilizes the gas generated from biomass gasification directly as fuel for SOFC, thereby realizing power generation from solid waste. This technology combines the carbon–neutral feature of biomass with the high efficiency and low emissions of SOFC, making it a promising route for clean energy generation. However, biomass gasification syngas possesses a complex composition, including a high concentration of inert gases, which imposes higher requirements on SOFC. This study developed a multi-channel, hierarchical structural design based on the commercial NiO-yttria-stabilized zirconia (YSZ) material system, realizing high-performance power generation using biomass gasification syngas. The results showed that the combination of a unique structural design and an enhanced interface electrochemical reaction effectively mitigates the influence from inert composition dilution. When operating in gasification syngas with nearly 60 % inert components, the power density can reach 2.07 W·cm<sup>−2</sup> (750 °C). In addition, due to the spatial separation of the inert support region and the electrochemically active region, the effect of controlling the position of carbon deposits was achieved, demonstrating 100 h stable operation with dry biomass gasification syngas. Hence, the combination of micro-tubular SOFC with distinctive structural regulation and biomass gasification exhibits promising prospects for further development.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131763\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424014676\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014676","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

生物质气化与固体氧化物燃料电池(SOFC)技术利用生物质气化产生的气体直接作为 SOFC 的燃料,从而实现固体废弃物发电。该技术将生物质的碳中和特性与 SOFC 的高效率和低排放相结合,是一条前景广阔的清洁能源发电路线。然而,生物质气化合成气成分复杂,包括高浓度的惰性气体,这对 SOFC 提出了更高的要求。本研究开发了一种基于商用氧化镍-钇稳定氧化锆(YSZ)材料体系的多通道分层结构设计,实现了利用生物质气化合成气的高性能发电。研究结果表明,独特的结构设计与增强的界面电化学反应相结合,有效缓解了惰性成分稀释的影响。在惰性成分占近 60% 的气化合成气中运行时,功率密度可达 2.07 W-cm-2(750 °C)。此外,由于惰性支撑区和电化学活性区在空间上的分离,还实现了控制碳沉积位置的效果,在干燥的生物质气化合成气中稳定运行了 100 小时。因此,具有独特结构调节的微管 SOFC 与生物质气化的结合具有广阔的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From biomass to power: High-performance reactor design for coking-resistant operation
Biomass gasification coupled with solid oxide fuel cell (SOFC) technology utilizes the gas generated from biomass gasification directly as fuel for SOFC, thereby realizing power generation from solid waste. This technology combines the carbon–neutral feature of biomass with the high efficiency and low emissions of SOFC, making it a promising route for clean energy generation. However, biomass gasification syngas possesses a complex composition, including a high concentration of inert gases, which imposes higher requirements on SOFC. This study developed a multi-channel, hierarchical structural design based on the commercial NiO-yttria-stabilized zirconia (YSZ) material system, realizing high-performance power generation using biomass gasification syngas. The results showed that the combination of a unique structural design and an enhanced interface electrochemical reaction effectively mitigates the influence from inert composition dilution. When operating in gasification syngas with nearly 60 % inert components, the power density can reach 2.07 W·cm−2 (750 °C). In addition, due to the spatial separation of the inert support region and the electrochemically active region, the effect of controlling the position of carbon deposits was achieved, demonstrating 100 h stable operation with dry biomass gasification syngas. Hence, the combination of micro-tubular SOFC with distinctive structural regulation and biomass gasification exhibits promising prospects for further development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Biodiesel production, calcium recovery, and adsorbent synthesis using dairy sludge. Improved biohydrogen production using Ni/ZrxCeyO2 loaded on foam reactor through steam gasification of sewage sludge. Selective phthalate removal by molecularly imprinted biomass carbon modified electro-Fenton cathode. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. Exploiting synergy of dopamine and stressful conditions in enhancing Haematococcus lacustris biomass and astaxanthin yield
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1