Tobias Pausch, Samanta Clopot, Dustin N Jordan, Oliver Weingart, Christoph Janiak, Bernd M Schmidt
{"title":"用于芳香族和脂肪族化合物分子筛分的氟化方形亚胺。","authors":"Tobias Pausch, Samanta Clopot, Dustin N Jordan, Oliver Weingart, Christoph Janiak, Bernd M Schmidt","doi":"10.1002/anie.202418877","DOIUrl":null,"url":null,"abstract":"<p><p>The development of more energy-efficient separation technologies is essential. Especially the separation of cyclic aliphatic hydrocarbons from their aromatic counterparts remains a significant challenge due to azeotrope formation and similar physical properties, often requiring energy-intensive processes. Herein, we introduce a novel class of electron-deficient macrocycles with a unique rectangular structure to optimise π···π interactions within the pore, enabling the highly selective molecular sieving of aromatic compounds from mixtures. Utilising dynamic covalent imine chemistry, the squareimine NDI2F42-based crystalline functional material is directly obtained from the reaction mixture in a single self-assembly step in high yields of 84%, alongside the larger NDI2F82 congener, which can be obtained in 69% yield. In vapour sorption and diffusion experiments, NDI2F42 demonstrates rapid adsorption kinetics with selectivities of 97:3 for benzene over cyclohexane and 93:7 for toluene over methylcyclohexane, while single-crystal and powder X-ray diffraction studies confirm that the selectivity is primarily governed by directed π···π interactions.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorinated Squareimines for Molecular Sieving of Aromatic over Aliphatic Compounds.\",\"authors\":\"Tobias Pausch, Samanta Clopot, Dustin N Jordan, Oliver Weingart, Christoph Janiak, Bernd M Schmidt\",\"doi\":\"10.1002/anie.202418877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of more energy-efficient separation technologies is essential. Especially the separation of cyclic aliphatic hydrocarbons from their aromatic counterparts remains a significant challenge due to azeotrope formation and similar physical properties, often requiring energy-intensive processes. Herein, we introduce a novel class of electron-deficient macrocycles with a unique rectangular structure to optimise π···π interactions within the pore, enabling the highly selective molecular sieving of aromatic compounds from mixtures. Utilising dynamic covalent imine chemistry, the squareimine NDI2F42-based crystalline functional material is directly obtained from the reaction mixture in a single self-assembly step in high yields of 84%, alongside the larger NDI2F82 congener, which can be obtained in 69% yield. In vapour sorption and diffusion experiments, NDI2F42 demonstrates rapid adsorption kinetics with selectivities of 97:3 for benzene over cyclohexane and 93:7 for toluene over methylcyclohexane, while single-crystal and powder X-ray diffraction studies confirm that the selectivity is primarily governed by directed π···π interactions.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202418877\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418877","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fluorinated Squareimines for Molecular Sieving of Aromatic over Aliphatic Compounds.
The development of more energy-efficient separation technologies is essential. Especially the separation of cyclic aliphatic hydrocarbons from their aromatic counterparts remains a significant challenge due to azeotrope formation and similar physical properties, often requiring energy-intensive processes. Herein, we introduce a novel class of electron-deficient macrocycles with a unique rectangular structure to optimise π···π interactions within the pore, enabling the highly selective molecular sieving of aromatic compounds from mixtures. Utilising dynamic covalent imine chemistry, the squareimine NDI2F42-based crystalline functional material is directly obtained from the reaction mixture in a single self-assembly step in high yields of 84%, alongside the larger NDI2F82 congener, which can be obtained in 69% yield. In vapour sorption and diffusion experiments, NDI2F42 demonstrates rapid adsorption kinetics with selectivities of 97:3 for benzene over cyclohexane and 93:7 for toluene over methylcyclohexane, while single-crystal and powder X-ray diffraction studies confirm that the selectivity is primarily governed by directed π···π interactions.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.