Andrew N Black, Jong Yoon Jeon, Andrew J Mularo, Natalie M Allen, Erangi Heenkenda, Julia C Buchanan-Schwanke, John W Bickham, Zachary E Lowe, J Andrew DeWoody
{"title":"用于保护监测的基因组易感性专题层。","authors":"Andrew N Black, Jong Yoon Jeon, Andrew J Mularo, Natalie M Allen, Erangi Heenkenda, Julia C Buchanan-Schwanke, John W Bickham, Zachary E Lowe, J Andrew DeWoody","doi":"10.1111/mec.17582","DOIUrl":null,"url":null,"abstract":"<p><p>Population genomics has great potential to inform applied conservation management and associated policy. However, the bioinformatic analyses and interpretation of population genomic datasets can be daunting and difficult to convey to nonspecialists, including on-the-ground conservationists that work with many state, federal and international agencies. We think that individual population genomic metrics of interest can be interpolated and ultimately distilled into thematic GIS layers that represent spatiotemporal genomic potential (or conversely, susceptibility) in conservation monitoring. As examples relevant to ongoing conservation efforts, we use introgressive hybridisation and individual heterozygosity to illustrate a conceptual approach for mapping population genomic susceptibility. The general framework of thematic layers could be extended to integrate key genomic metrics (e.g., runs of homozygosity and genomic load) that are relevant to many conservation efforts.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17582"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thematic Layers of Genomic Susceptibility for Conservation Monitoring.\",\"authors\":\"Andrew N Black, Jong Yoon Jeon, Andrew J Mularo, Natalie M Allen, Erangi Heenkenda, Julia C Buchanan-Schwanke, John W Bickham, Zachary E Lowe, J Andrew DeWoody\",\"doi\":\"10.1111/mec.17582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Population genomics has great potential to inform applied conservation management and associated policy. However, the bioinformatic analyses and interpretation of population genomic datasets can be daunting and difficult to convey to nonspecialists, including on-the-ground conservationists that work with many state, federal and international agencies. We think that individual population genomic metrics of interest can be interpolated and ultimately distilled into thematic GIS layers that represent spatiotemporal genomic potential (or conversely, susceptibility) in conservation monitoring. As examples relevant to ongoing conservation efforts, we use introgressive hybridisation and individual heterozygosity to illustrate a conceptual approach for mapping population genomic susceptibility. The general framework of thematic layers could be extended to integrate key genomic metrics (e.g., runs of homozygosity and genomic load) that are relevant to many conservation efforts.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17582\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17582\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17582","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thematic Layers of Genomic Susceptibility for Conservation Monitoring.
Population genomics has great potential to inform applied conservation management and associated policy. However, the bioinformatic analyses and interpretation of population genomic datasets can be daunting and difficult to convey to nonspecialists, including on-the-ground conservationists that work with many state, federal and international agencies. We think that individual population genomic metrics of interest can be interpolated and ultimately distilled into thematic GIS layers that represent spatiotemporal genomic potential (or conversely, susceptibility) in conservation monitoring. As examples relevant to ongoing conservation efforts, we use introgressive hybridisation and individual heterozygosity to illustrate a conceptual approach for mapping population genomic susceptibility. The general framework of thematic layers could be extended to integrate key genomic metrics (e.g., runs of homozygosity and genomic load) that are relevant to many conservation efforts.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms