Jennifer M Finan, Roberto Di Niro, Soon Young Park, Kang Jin Jeong, Madeline D Hedberg, Alexander Smith, Grace A McCarthy, Alex O Haber, John Muschler, Rosalie C Sears, Gordon B Mills, William H Gmeiner, Jonathan R Brody
{"title":"聚合氟嘧啶 CF10 通过增加复制应激克服了 5-FU 在胰腺导管腺癌细胞中的局限性。","authors":"Jennifer M Finan, Roberto Di Niro, Soon Young Park, Kang Jin Jeong, Madeline D Hedberg, Alexander Smith, Grace A McCarthy, Alex O Haber, John Muschler, Rosalie C Sears, Gordon B Mills, William H Gmeiner, Jonathan R Brody","doi":"10.1080/15384047.2024.2421584","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2421584"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552260/pdf/","citationCount":"0","resultStr":"{\"title\":\"The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress.\",\"authors\":\"Jennifer M Finan, Roberto Di Niro, Soon Young Park, Kang Jin Jeong, Madeline D Hedberg, Alexander Smith, Grace A McCarthy, Alex O Haber, John Muschler, Rosalie C Sears, Gordon B Mills, William H Gmeiner, Jonathan R Brody\",\"doi\":\"10.1080/15384047.2024.2421584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"25 1\",\"pages\":\"2421584\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2024.2421584\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2421584","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress.
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.