Mustafa Nile, Matthias Folwaczny, Andreas Kessler, Andrea Wichelhaus, Mila Janjic Rankovic, Uwe Baumert
{"title":"开发用于研究剪切应力对牙周韧带细胞影响的定制流体流动室","authors":"Mustafa Nile, Matthias Folwaczny, Andreas Kessler, Andrea Wichelhaus, Mila Janjic Rankovic, Uwe Baumert","doi":"10.3390/cells13211751","DOIUrl":null,"url":null,"abstract":"<p><p>The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) stimulates the remodeling of PDL and alveolar bone. Herein, we present the construction of a parallel fluid-flow apparatus to determine the effect of FSS on PDL cells. The chamber was designed and optimized using computer-aided and computational fluid dynamics software. The chamber was formed by PDMS using a negative molding technique. hPDLCs from two donors were seeded on microscopic slides and exposed to FSS of 6 dyn/cm<sup>2</sup> for 1 h. The effect of FSS on gene and protein expression was determined using RT-qPCR and Western blot. FSS upregulated genes responsible for mechanosensing (FOS), tissue formation (<i>RUNX2</i>, <i>VEGFA</i>), and inflammation (<i>PTGS2/COX2</i>, <i>CXCL8/IL8</i>, IL6) in both donors, with donor 2 showing higher gene upregulation. Protein expression of PTGS2/COX2 was higher in donor 2 but not in donor 1. RUNX2 protein was not expressed in either donor after FSS. In summary, FSS is crucial in regulating gene expression linked to PDL remodeling and inflammation, with donor variability potentially affecting outcomes.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545369/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Custom Fluid Flow Chamber for Investigating the Effects of Shear Stress on Periodontal Ligament Cells.\",\"authors\":\"Mustafa Nile, Matthias Folwaczny, Andreas Kessler, Andrea Wichelhaus, Mila Janjic Rankovic, Uwe Baumert\",\"doi\":\"10.3390/cells13211751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) stimulates the remodeling of PDL and alveolar bone. Herein, we present the construction of a parallel fluid-flow apparatus to determine the effect of FSS on PDL cells. The chamber was designed and optimized using computer-aided and computational fluid dynamics software. The chamber was formed by PDMS using a negative molding technique. hPDLCs from two donors were seeded on microscopic slides and exposed to FSS of 6 dyn/cm<sup>2</sup> for 1 h. The effect of FSS on gene and protein expression was determined using RT-qPCR and Western blot. FSS upregulated genes responsible for mechanosensing (FOS), tissue formation (<i>RUNX2</i>, <i>VEGFA</i>), and inflammation (<i>PTGS2/COX2</i>, <i>CXCL8/IL8</i>, IL6) in both donors, with donor 2 showing higher gene upregulation. Protein expression of PTGS2/COX2 was higher in donor 2 but not in donor 1. RUNX2 protein was not expressed in either donor after FSS. In summary, FSS is crucial in regulating gene expression linked to PDL remodeling and inflammation, with donor variability potentially affecting outcomes.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545369/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13211751\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211751","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Development of a Custom Fluid Flow Chamber for Investigating the Effects of Shear Stress on Periodontal Ligament Cells.
The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) stimulates the remodeling of PDL and alveolar bone. Herein, we present the construction of a parallel fluid-flow apparatus to determine the effect of FSS on PDL cells. The chamber was designed and optimized using computer-aided and computational fluid dynamics software. The chamber was formed by PDMS using a negative molding technique. hPDLCs from two donors were seeded on microscopic slides and exposed to FSS of 6 dyn/cm2 for 1 h. The effect of FSS on gene and protein expression was determined using RT-qPCR and Western blot. FSS upregulated genes responsible for mechanosensing (FOS), tissue formation (RUNX2, VEGFA), and inflammation (PTGS2/COX2, CXCL8/IL8, IL6) in both donors, with donor 2 showing higher gene upregulation. Protein expression of PTGS2/COX2 was higher in donor 2 but not in donor 1. RUNX2 protein was not expressed in either donor after FSS. In summary, FSS is crucial in regulating gene expression linked to PDL remodeling and inflammation, with donor variability potentially affecting outcomes.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.