Ikbal Andrian Malau, Jane Pei-Chen Chang, Yi-Wen Lin, Cheng-Chen Chang, Wei-Che Chiu, Kuan-Pin Su
{"title":"欧米茄-3 脂肪酸与抑郁症的神经炎症:针对损伤相关分子模式和神经生物标志物。","authors":"Ikbal Andrian Malau, Jane Pei-Chen Chang, Yi-Wen Lin, Cheng-Chen Chang, Wei-Che Chiu, Kuan-Pin Su","doi":"10.3390/cells13211791","DOIUrl":null,"url":null,"abstract":"<p><p>Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Omega-3 Fatty Acids and Neuroinflammation in Depression: Targeting Damage-Associated Molecular Patterns and Neural Biomarkers.\",\"authors\":\"Ikbal Andrian Malau, Jane Pei-Chen Chang, Yi-Wen Lin, Cheng-Chen Chang, Wei-Che Chiu, Kuan-Pin Su\",\"doi\":\"10.3390/cells13211791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13211791\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211791","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Omega-3 Fatty Acids and Neuroinflammation in Depression: Targeting Damage-Associated Molecular Patterns and Neural Biomarkers.
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.