Jingyi Xiao, Sijia Hao, Li-Juan Xiao, Yang Yang, Qinglong L Wu, Dan He, Lijun Zhou, Ren Hu, Lijuan Ren
{"title":"与富营养化的热带水库相比,颗粒附着细菌群落更容易受到季节性环境波动的影响。","authors":"Jingyi Xiao, Sijia Hao, Li-Juan Xiao, Yang Yang, Qinglong L Wu, Dan He, Lijun Zhou, Ren Hu, Lijuan Ren","doi":"10.1093/femsec/fiae154","DOIUrl":null,"url":null,"abstract":"<p><p>Particle-attached bacterial (PAB) communities play pivotal roles in water organic matter decomposition, nutrient cycling, and the natural self-purification processes. However, we know little about their responses to seasonal environmental fluctuations, under eutrophication in reservoir ecosystems. In this study, we studied the shifts of PAB communities to seasonal environmental fluctuations in tropical China. Trophic state index (TSI) indicated that the studied reservoirs ranged from mesotrophic to eutrophic state with a gradual increase in TSI from 31 to 58. In eutrophic reservoirs, Cyanobacteria, especially Raphidiopsis raciborskii, significantly increased in its relative abundance from wet to dry season, but Synechococcales and Microcystaceae decreased. In contrast, the relative abundance of Clostridia, Bacilli, Coriobacteriia, Enterobacteriales, and Vibrionales were more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic reservoirs. PAB co-occurrence relationships in mesotrophic reservoirs varied more greatly in response to seasonal environmental fluctuations, compared with eutrophic reservoirs, in terms of topological properties of connectedness, average degree, robustness and vulnerability. Our results further demonstrated that the seasonal stability of PAB co-occurrence relationships was strongly correlative with TSI through mediating key bacterial taxa and community biodiversity. We proposed that eutrophication dramatically reduced the seasonal variation of PAB community compositions and co-occurring relationships in reservoir ecosystems.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle-attached bacterial communities are more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic tropical reservoirs.\",\"authors\":\"Jingyi Xiao, Sijia Hao, Li-Juan Xiao, Yang Yang, Qinglong L Wu, Dan He, Lijun Zhou, Ren Hu, Lijuan Ren\",\"doi\":\"10.1093/femsec/fiae154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Particle-attached bacterial (PAB) communities play pivotal roles in water organic matter decomposition, nutrient cycling, and the natural self-purification processes. However, we know little about their responses to seasonal environmental fluctuations, under eutrophication in reservoir ecosystems. In this study, we studied the shifts of PAB communities to seasonal environmental fluctuations in tropical China. Trophic state index (TSI) indicated that the studied reservoirs ranged from mesotrophic to eutrophic state with a gradual increase in TSI from 31 to 58. In eutrophic reservoirs, Cyanobacteria, especially Raphidiopsis raciborskii, significantly increased in its relative abundance from wet to dry season, but Synechococcales and Microcystaceae decreased. In contrast, the relative abundance of Clostridia, Bacilli, Coriobacteriia, Enterobacteriales, and Vibrionales were more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic reservoirs. PAB co-occurrence relationships in mesotrophic reservoirs varied more greatly in response to seasonal environmental fluctuations, compared with eutrophic reservoirs, in terms of topological properties of connectedness, average degree, robustness and vulnerability. Our results further demonstrated that the seasonal stability of PAB co-occurrence relationships was strongly correlative with TSI through mediating key bacterial taxa and community biodiversity. We proposed that eutrophication dramatically reduced the seasonal variation of PAB community compositions and co-occurring relationships in reservoir ecosystems.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae154\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae154","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Particle-attached bacterial communities are more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic tropical reservoirs.
Particle-attached bacterial (PAB) communities play pivotal roles in water organic matter decomposition, nutrient cycling, and the natural self-purification processes. However, we know little about their responses to seasonal environmental fluctuations, under eutrophication in reservoir ecosystems. In this study, we studied the shifts of PAB communities to seasonal environmental fluctuations in tropical China. Trophic state index (TSI) indicated that the studied reservoirs ranged from mesotrophic to eutrophic state with a gradual increase in TSI from 31 to 58. In eutrophic reservoirs, Cyanobacteria, especially Raphidiopsis raciborskii, significantly increased in its relative abundance from wet to dry season, but Synechococcales and Microcystaceae decreased. In contrast, the relative abundance of Clostridia, Bacilli, Coriobacteriia, Enterobacteriales, and Vibrionales were more susceptible to seasonal environmental fluctuations in mesotrophic than eutrophic reservoirs. PAB co-occurrence relationships in mesotrophic reservoirs varied more greatly in response to seasonal environmental fluctuations, compared with eutrophic reservoirs, in terms of topological properties of connectedness, average degree, robustness and vulnerability. Our results further demonstrated that the seasonal stability of PAB co-occurrence relationships was strongly correlative with TSI through mediating key bacterial taxa and community biodiversity. We proposed that eutrophication dramatically reduced the seasonal variation of PAB community compositions and co-occurring relationships in reservoir ecosystems.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms