过表达 AtNHX1 可提高烟草(Nicotiana tabacum)根的富集能力,从而增加叶钾含量。

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-11-01 DOI:10.1071/FP24144
Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang
{"title":"过表达 AtNHX1 可提高烟草(Nicotiana tabacum)根的富集能力,从而增加叶钾含量。","authors":"Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang","doi":"10.1071/FP24144","DOIUrl":null,"url":null,"abstract":"<p><p>The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of <i>AtNHX1</i> increases leaf potassium content by improving enrichment capacity in tobacco (<i>Nicotiana tabacum</i>) roots.\",\"authors\":\"Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang\",\"doi\":\"10.1071/FP24144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24144\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24144","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

NHX1 基因编码位于调质体膜上的 Na+ /H+ 反转运体,它在调节植物耐盐性方面起着关键作用。它还参与植物对 K 的吸收和积累,但其确切机制尚不清楚。在这项研究中,我们阐明了 NHX1 诱导钾含量增加的生理基础。我们评估了田间种植和水培植物的主要农艺性状、叶片 K 含量、K+ 吸收动力学以及根系形态和生理特征。研究对象包括一个野生型烟草(Nicotiana tabacum)品种(K326)和三个过表达拟南芥 AtNHX1 的转基因烟草品系(NK7、NK9 和 NK10)。结果表明,在田间和水培环境中,过表达 AtNHX1 的烟草品系的农艺表现与 K326 相似。三个 AtNHX1 外表达烟草品系的叶片 K 含量明显高于 K326。在水培条件下,AtNHX1 基因表达烟草品系的钾吸收能力增强,最大钾吸收率提高。与 K326 相比,AtNHX1 外表达株系的根系形态和生理性状也明显优于 K326,包括根系生物量、根系体积、吸收面积、根系活性、阳离子交换能力、可溶性蛋白含量和 H+ -ATPase 活性。在烟草中过表达 AtNHX1 能显著提高钾的吸收和积累。因此,这些转基因品系的叶片钾含量最终大大增加。我们的研究结果有力地表明,AtNHX1的过表达通过提高烟草根系富集钾的能力而增加了叶片钾的含量,从而推进了对AtNHX1功能的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overexpression of AtNHX1 increases leaf potassium content by improving enrichment capacity in tobacco (Nicotiana tabacum) roots.

The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Overexpression of AtNHX1 increases leaf potassium content by improving enrichment capacity in tobacco (Nicotiana tabacum) roots. Exogenous nitric oxide extends longevity in cut Lilium tigrinum flowers by orchestrating biochemical and molecular aspects. Overexpression of HvVDE gene improved light protection in transgenic tobacco (Nicotiana tabacum). High-throughput phenotyping of soybean (Glycine max) transpiration response curves to rising atmospheric drying in a mapping population. Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava (Manihot esculenta) subjected to variable high light conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1