Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang
{"title":"过表达 AtNHX1 可提高烟草(Nicotiana tabacum)根的富集能力,从而增加叶钾含量。","authors":"Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang","doi":"10.1071/FP24144","DOIUrl":null,"url":null,"abstract":"<p><p>The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of <i>AtNHX1</i> increases leaf potassium content by improving enrichment capacity in tobacco (<i>Nicotiana tabacum</i>) roots.\",\"authors\":\"Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang\",\"doi\":\"10.1071/FP24144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24144\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24144","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Overexpression of AtNHX1 increases leaf potassium content by improving enrichment capacity in tobacco (Nicotiana tabacum) roots.
The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.