{"title":"利用增量再训练 LSTM 从有限的 CGM 数据中进行个性化血糖预测","authors":"Yiheng Shen, Samantha Kleinberg","doi":"10.1109/TBME.2024.3494732","DOIUrl":null,"url":null,"abstract":"<p><p>For people with Type 1 diabetes (T1D), accurate blood glucose (BG) forecasting is crucial for the effective delivery of insulin by Artificial Pancreas (AP) systems. Deep learning frameworks like Long Short-Term-Memory (LSTM) have been widely used to predict BG using continuous glucose monitor (CGM) data. However, these methods usually require large amounts of training data for personalized forecasts. Moreover, individuals with diabetes exhibit diverse glucose variability (GV), resulting in varying forecast accuracy. To address these limitations, we propose a novel deep learning framework: Incrementally Retrained Stacked LSTM (IS-LSTM). This approach gradually adapts to individuals' data and employs parameter-transfer for efficiency. We compare our method to three benchmarks using two CGM datasets from individuals with T1D: OpenAPS and Replace-BG. On both datasets, our approach significantly reduces root mean square error compared to the state of the art (Stacked LSTM): from 14.55 to 10.23mg/dL (OpenAPS) and 17.15 to 13.41mg/dL (Replace-BG) at 30-minute Prediction Horizon (PH). Clarke error grid analysis demonstrates clinical feasibility with at least 98.81% and 97.25% of predictions within the clinically safe zone at 30- and 60-minute PHs. Further, we demonstrate the effectiveness of our method in cold-start scenarios, which helps new CGM users obtain accurate predictions.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Blood Glucose Forecasting From Limited CGM Data Using Incrementally Retrained LSTM.\",\"authors\":\"Yiheng Shen, Samantha Kleinberg\",\"doi\":\"10.1109/TBME.2024.3494732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For people with Type 1 diabetes (T1D), accurate blood glucose (BG) forecasting is crucial for the effective delivery of insulin by Artificial Pancreas (AP) systems. Deep learning frameworks like Long Short-Term-Memory (LSTM) have been widely used to predict BG using continuous glucose monitor (CGM) data. However, these methods usually require large amounts of training data for personalized forecasts. Moreover, individuals with diabetes exhibit diverse glucose variability (GV), resulting in varying forecast accuracy. To address these limitations, we propose a novel deep learning framework: Incrementally Retrained Stacked LSTM (IS-LSTM). This approach gradually adapts to individuals' data and employs parameter-transfer for efficiency. We compare our method to three benchmarks using two CGM datasets from individuals with T1D: OpenAPS and Replace-BG. On both datasets, our approach significantly reduces root mean square error compared to the state of the art (Stacked LSTM): from 14.55 to 10.23mg/dL (OpenAPS) and 17.15 to 13.41mg/dL (Replace-BG) at 30-minute Prediction Horizon (PH). Clarke error grid analysis demonstrates clinical feasibility with at least 98.81% and 97.25% of predictions within the clinically safe zone at 30- and 60-minute PHs. Further, we demonstrate the effectiveness of our method in cold-start scenarios, which helps new CGM users obtain accurate predictions.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2024.3494732\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3494732","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Personalized Blood Glucose Forecasting From Limited CGM Data Using Incrementally Retrained LSTM.
For people with Type 1 diabetes (T1D), accurate blood glucose (BG) forecasting is crucial for the effective delivery of insulin by Artificial Pancreas (AP) systems. Deep learning frameworks like Long Short-Term-Memory (LSTM) have been widely used to predict BG using continuous glucose monitor (CGM) data. However, these methods usually require large amounts of training data for personalized forecasts. Moreover, individuals with diabetes exhibit diverse glucose variability (GV), resulting in varying forecast accuracy. To address these limitations, we propose a novel deep learning framework: Incrementally Retrained Stacked LSTM (IS-LSTM). This approach gradually adapts to individuals' data and employs parameter-transfer for efficiency. We compare our method to three benchmarks using two CGM datasets from individuals with T1D: OpenAPS and Replace-BG. On both datasets, our approach significantly reduces root mean square error compared to the state of the art (Stacked LSTM): from 14.55 to 10.23mg/dL (OpenAPS) and 17.15 to 13.41mg/dL (Replace-BG) at 30-minute Prediction Horizon (PH). Clarke error grid analysis demonstrates clinical feasibility with at least 98.81% and 97.25% of predictions within the clinically safe zone at 30- and 60-minute PHs. Further, we demonstrate the effectiveness of our method in cold-start scenarios, which helps new CGM users obtain accurate predictions.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.