Nikita Sergejevs, Dönem Avci, Michael L van de Weijer, Robin A Corey, Marius K Lemberg, Pedro Carvalho
{"title":"信号肽肽酶对羊毛甾醇脱甲基酶 CYP51A1 的拓扑监测","authors":"Nikita Sergejevs, Dönem Avci, Michael L van de Weijer, Robin A Corey, Marius K Lemberg, Pedro Carvalho","doi":"10.1242/jcs.262333","DOIUrl":null,"url":null,"abstract":"<p><p>Cleavage of transmembrane segments on target proteins by the aspartyl intramembrane protease signal peptide peptidase (SPP) has been linked to immunity, viral infection and protein quality control. How SPP recognizes its various substrates and specifies their fate remains elusive. Here we identified the lanosterol demethylase CYP51A1 as an SPP substrate and show that SPP-catalyzed cleavage triggers CYP51A1 clearance by ER-associated degradation (ERAD). We observe that SPP targets only a fraction of CYP51A1 molecules and identified an amphipathic helix in the N-terminus as a key determinant for SPP recognition. SPP recognition is remarkably specific to CYP51A1 molecules with the amphipathic helix aberrantly inserted in the membrane with a type II orientation. Thus, our data are consistent with a role for SPP in topology surveillance, triggering the clearance of certain, potentially non-functional conformers.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology surveillance of the lanosterol demethylase CYP51A1 by Signal Peptide Peptidase.\",\"authors\":\"Nikita Sergejevs, Dönem Avci, Michael L van de Weijer, Robin A Corey, Marius K Lemberg, Pedro Carvalho\",\"doi\":\"10.1242/jcs.262333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cleavage of transmembrane segments on target proteins by the aspartyl intramembrane protease signal peptide peptidase (SPP) has been linked to immunity, viral infection and protein quality control. How SPP recognizes its various substrates and specifies their fate remains elusive. Here we identified the lanosterol demethylase CYP51A1 as an SPP substrate and show that SPP-catalyzed cleavage triggers CYP51A1 clearance by ER-associated degradation (ERAD). We observe that SPP targets only a fraction of CYP51A1 molecules and identified an amphipathic helix in the N-terminus as a key determinant for SPP recognition. SPP recognition is remarkably specific to CYP51A1 molecules with the amphipathic helix aberrantly inserted in the membrane with a type II orientation. Thus, our data are consistent with a role for SPP in topology surveillance, triggering the clearance of certain, potentially non-functional conformers.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.262333\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262333","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
天冬氨酰膜内蛋白酶信号肽肽酶(SPP)对目标蛋白质跨膜片段的裂解与免疫、病毒感染和蛋白质质量控制有关。SPP 如何识别其各种底物并确定它们的命运仍是一个谜。在这里,我们发现羊毛甾醇去甲基化酶 CYP51A1 是 SPP 的底物,并证明 SPP 催化的裂解会触发 CYP51A1 通过 ER 相关降解(ERAD)被清除。我们观察到 SPP 只针对一部分 CYP51A1 分子,并确定 N 端的两性螺旋是 SPP 识别的关键决定因素。SPP 对两侧螺旋以 II 型取向异常插入膜的 CYP51A1 分子的识别具有明显的特异性。因此,我们的数据与 SPP 在拓扑监测中的作用一致,即触发清除某些可能无功能的构象。
Topology surveillance of the lanosterol demethylase CYP51A1 by Signal Peptide Peptidase.
Cleavage of transmembrane segments on target proteins by the aspartyl intramembrane protease signal peptide peptidase (SPP) has been linked to immunity, viral infection and protein quality control. How SPP recognizes its various substrates and specifies their fate remains elusive. Here we identified the lanosterol demethylase CYP51A1 as an SPP substrate and show that SPP-catalyzed cleavage triggers CYP51A1 clearance by ER-associated degradation (ERAD). We observe that SPP targets only a fraction of CYP51A1 molecules and identified an amphipathic helix in the N-terminus as a key determinant for SPP recognition. SPP recognition is remarkably specific to CYP51A1 molecules with the amphipathic helix aberrantly inserted in the membrane with a type II orientation. Thus, our data are consistent with a role for SPP in topology surveillance, triggering the clearance of certain, potentially non-functional conformers.