多体运动学优化管道对标记残余误差的影响。

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2024-11-01 DOI:10.1016/j.jbiomech.2024.112395
Vignesh Radhakrishnan, Samadhan Patil, Adar Pelah, Peter Ellison
{"title":"多体运动学优化管道对标记残余误差的影响。","authors":"Vignesh Radhakrishnan,&nbsp;Samadhan Patil,&nbsp;Adar Pelah,&nbsp;Peter Ellison","doi":"10.1016/j.jbiomech.2024.112395","DOIUrl":null,"url":null,"abstract":"<div><div>Residual errors are used as a goodness-of-fit metric of the musculoskeletal model to the experimental data in multibody kinematic optimisation (MKO) analyses. Despite many studies reporting residual errors as a criterion for evaluating their proposed algorithm or model, the validity of residual errors as a performance metric has been questioned, with studies indicating a non-causal relationship between residual errors and computed joint angles. Additionally, the impact of different parameters of an MKO pipeline on residual errors has not been analysed. In our study, we have investigated the effect of each step of the MKO pipeline on residual errors, and the existence of a causal relationship between residual errors and joint angles. Increases in residual errors from the baseline model (13.84 [12.72, 15.15]mm) were obtained for: models with marker registration errors of 1.25 cm (16.36 [15.37, 17.57]mm); models with segment scaling errors of 1.25 cm (14.84 [13.77, 16.24]mm); variation in marker weighting scheme (15.28[14.00, 16.85]mm); and models with differing joint constraints (18.21[17.37, 19.11]mm). We also observed that significant variation in residual errors results in significant variation in computed joint angles, with increases in residual error positively correlated with increases in joint angle errors when the same MKO pipeline is employed. Our findings support the existence of a causal relationship and present the significant effect the MKO pipeline has on residual errors. We believe our results can further the discussion of residual errors as a goodness-of-fit metric, specifically in the absence of artefact-free bone movement.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"177 ","pages":"Article 112395"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of multibody kinematic optimisation pipeline on marker residual errors\",\"authors\":\"Vignesh Radhakrishnan,&nbsp;Samadhan Patil,&nbsp;Adar Pelah,&nbsp;Peter Ellison\",\"doi\":\"10.1016/j.jbiomech.2024.112395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Residual errors are used as a goodness-of-fit metric of the musculoskeletal model to the experimental data in multibody kinematic optimisation (MKO) analyses. Despite many studies reporting residual errors as a criterion for evaluating their proposed algorithm or model, the validity of residual errors as a performance metric has been questioned, with studies indicating a non-causal relationship between residual errors and computed joint angles. Additionally, the impact of different parameters of an MKO pipeline on residual errors has not been analysed. In our study, we have investigated the effect of each step of the MKO pipeline on residual errors, and the existence of a causal relationship between residual errors and joint angles. Increases in residual errors from the baseline model (13.84 [12.72, 15.15]mm) were obtained for: models with marker registration errors of 1.25 cm (16.36 [15.37, 17.57]mm); models with segment scaling errors of 1.25 cm (14.84 [13.77, 16.24]mm); variation in marker weighting scheme (15.28[14.00, 16.85]mm); and models with differing joint constraints (18.21[17.37, 19.11]mm). We also observed that significant variation in residual errors results in significant variation in computed joint angles, with increases in residual error positively correlated with increases in joint angle errors when the same MKO pipeline is employed. Our findings support the existence of a causal relationship and present the significant effect the MKO pipeline has on residual errors. We believe our results can further the discussion of residual errors as a goodness-of-fit metric, specifically in the absence of artefact-free bone movement.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"177 \",\"pages\":\"Article 112395\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929024004731\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004731","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在多体运动学优化(MKO)分析中,残余误差被用作肌肉骨骼模型与实验数据的拟合度量。尽管许多研究都将残余误差作为评估其提出的算法或模型的标准,但残余误差作为性能指标的有效性一直受到质疑,研究表明残余误差与计算的关节角度之间存在非因果关系。此外,尚未分析 MKO 管道的不同参数对残余误差的影响。在我们的研究中,我们调查了 MKO 管道每个步骤对残余误差的影响,以及残余误差和关节角度之间是否存在因果关系。与基线模型(13.84 [12.72, 15.15]毫米)相比,下列模型的残余误差有所增加:标记配准误差为 1.25 厘米的模型(16.36 [15.37, 17.57]毫米);片段缩放误差为 1.25 厘米的模型(14.84 [13.77, 16.24]毫米);标记加权方案的变化(15.28[14.00, 16.85]毫米);以及具有不同关节约束的模型(18.21[17.37, 19.11]毫米)。我们还观察到,残余误差的显著变化会导致计算关节角度的显著变化,当采用相同的 MKO 管道时,残余误差的增加与关节角度误差的增加呈正相关。我们的研究结果支持因果关系的存在,并展示了 MKO 管道对残余误差的显著影响。我们相信,我们的研究结果能进一步推动将残余误差作为拟合优度指标的讨论,特别是在没有无伪影骨骼运动的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of multibody kinematic optimisation pipeline on marker residual errors
Residual errors are used as a goodness-of-fit metric of the musculoskeletal model to the experimental data in multibody kinematic optimisation (MKO) analyses. Despite many studies reporting residual errors as a criterion for evaluating their proposed algorithm or model, the validity of residual errors as a performance metric has been questioned, with studies indicating a non-causal relationship between residual errors and computed joint angles. Additionally, the impact of different parameters of an MKO pipeline on residual errors has not been analysed. In our study, we have investigated the effect of each step of the MKO pipeline on residual errors, and the existence of a causal relationship between residual errors and joint angles. Increases in residual errors from the baseline model (13.84 [12.72, 15.15]mm) were obtained for: models with marker registration errors of 1.25 cm (16.36 [15.37, 17.57]mm); models with segment scaling errors of 1.25 cm (14.84 [13.77, 16.24]mm); variation in marker weighting scheme (15.28[14.00, 16.85]mm); and models with differing joint constraints (18.21[17.37, 19.11]mm). We also observed that significant variation in residual errors results in significant variation in computed joint angles, with increases in residual error positively correlated with increases in joint angle errors when the same MKO pipeline is employed. Our findings support the existence of a causal relationship and present the significant effect the MKO pipeline has on residual errors. We believe our results can further the discussion of residual errors as a goodness-of-fit metric, specifically in the absence of artefact-free bone movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Efficient development of subject-specific finite element knee models: Automated identification of soft-tissue attachments The aging Achilles tendon: model-predicted changes in calf muscle neuromechanics Lumbopelvic rhythm analysis by quartiles: Identification of differences in lumbar and pelvic contribution during trunk flexion and extension in subjects with low back pain of different origin. A case-control study Effects of knee joint position on the triceps Suræ torque-size relationship during plantarflexion in healthy young adults Differential T2* changes in tibialis anterior and soleus: Influence of exercise type and perceived exertion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1