Marjolein de Jager, Carlos Vega, Pablo Montero de Hijes, Frank Smallenburg, Laura Filion
{"title":"硬球晶核的统计力学。","authors":"Marjolein de Jager, Carlos Vega, Pablo Montero de Hijes, Frank Smallenburg, Laura Filion","doi":"10.1063/5.0226862","DOIUrl":null,"url":null,"abstract":"<p><p>In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively explored model system. Nonetheless, even in this simple model system, the complex thermodynamics of crystal nuclei can sometimes give rise to counterintuitive results, such as the recent observation that the pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the strictly positive Young-Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the founding equations associated with crystal nucleation and use the hard-sphere model to demonstrate how they give rise to this negative pressure difference. We exploit the fact that, in the canonical ensemble, a nucleus can be in a (meta)stable equilibrium with the fluid and measure the surface stress for both flat and curved interfaces. Additionally, we explain the effect of defects on the chemical potential inside the crystal nucleus. Finally, we present a simple, fitted thermodynamic model to capture the properties of the nucleus, including the work required to form critical nuclei.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical mechanics of crystal nuclei of hard spheres.\",\"authors\":\"Marjolein de Jager, Carlos Vega, Pablo Montero de Hijes, Frank Smallenburg, Laura Filion\",\"doi\":\"10.1063/5.0226862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively explored model system. Nonetheless, even in this simple model system, the complex thermodynamics of crystal nuclei can sometimes give rise to counterintuitive results, such as the recent observation that the pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the strictly positive Young-Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the founding equations associated with crystal nucleation and use the hard-sphere model to demonstrate how they give rise to this negative pressure difference. We exploit the fact that, in the canonical ensemble, a nucleus can be in a (meta)stable equilibrium with the fluid and measure the surface stress for both flat and curved interfaces. Additionally, we explain the effect of defects on the chemical potential inside the crystal nucleus. Finally, we present a simple, fitted thermodynamic model to capture the properties of the nucleus, including the work required to form critical nuclei.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 18\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226862\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226862","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Statistical mechanics of crystal nuclei of hard spheres.
In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively explored model system. Nonetheless, even in this simple model system, the complex thermodynamics of crystal nuclei can sometimes give rise to counterintuitive results, such as the recent observation that the pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the strictly positive Young-Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the founding equations associated with crystal nucleation and use the hard-sphere model to demonstrate how they give rise to this negative pressure difference. We exploit the fact that, in the canonical ensemble, a nucleus can be in a (meta)stable equilibrium with the fluid and measure the surface stress for both flat and curved interfaces. Additionally, we explain the effect of defects on the chemical potential inside the crystal nucleus. Finally, we present a simple, fitted thermodynamic model to capture the properties of the nucleus, including the work required to form critical nuclei.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.