Jazmin Machuca, Joanna Wirkus, Aya S Ead, Payam Vahmani, Karen E Matsukuma, Gerardo G Mackenzie, Patricia I Oteiza
{"title":"膳食中的ω-3(ω-3)脂肪酸可减轻高脂饮食小鼠肠屏障完整性的改变:对胰腺癌发生的影响。","authors":"Jazmin Machuca, Joanna Wirkus, Aya S Ead, Payam Vahmani, Karen E Matsukuma, Gerardo G Mackenzie, Patricia I Oteiza","doi":"10.1016/j.tjnut.2024.10.054","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High fat diets (HFD) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity.</p><p><strong>Objective: </strong>to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)].</p><p><strong>Methods: </strong>Male and female KC mice were randomized into one of four groups: i) a control diet containing approximately 11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C); ii) the control diet with high levels of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3); iii) a HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF); iv) a HFD with high levels of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3).</p><p><strong>Results: </strong>Consumption of a HFD for 8 weeks caused: i) disruption of tight junction structure and function; ii) decreased Goblet cell number, iii) higher colonic TLR4 and NOX1 expression; iv) activation of TLR4-triggered pathways, i.e. NF-κB, JNK1/2; v) elevated plasma LPS levels; v) higher pancreatic TLR4 expression, and vi) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3.</p><p><strong>Conclusions: </strong>Our findings support the concept that, in the context of obesity, ω-3 FA have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary omega-3 (ω-3) fatty acids mitigate intestinal barrier integrity alterations in mice fed a high-fat diet: Implications for pancreatic carcinogenesis.\",\"authors\":\"Jazmin Machuca, Joanna Wirkus, Aya S Ead, Payam Vahmani, Karen E Matsukuma, Gerardo G Mackenzie, Patricia I Oteiza\",\"doi\":\"10.1016/j.tjnut.2024.10.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High fat diets (HFD) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity.</p><p><strong>Objective: </strong>to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)].</p><p><strong>Methods: </strong>Male and female KC mice were randomized into one of four groups: i) a control diet containing approximately 11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C); ii) the control diet with high levels of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3); iii) a HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF); iv) a HFD with high levels of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3).</p><p><strong>Results: </strong>Consumption of a HFD for 8 weeks caused: i) disruption of tight junction structure and function; ii) decreased Goblet cell number, iii) higher colonic TLR4 and NOX1 expression; iv) activation of TLR4-triggered pathways, i.e. NF-κB, JNK1/2; v) elevated plasma LPS levels; v) higher pancreatic TLR4 expression, and vi) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3.</p><p><strong>Conclusions: </strong>Our findings support the concept that, in the context of obesity, ω-3 FA have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.</p>\",\"PeriodicalId\":16620,\"journal\":{\"name\":\"Journal of Nutrition\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tjnut.2024.10.054\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2024.10.054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
摘要
背景:虽然身体肥胖是公认的胰腺导管腺癌(PDAC)风险因素,但人们对脂肪成分如何影响胰腺癌发生的内在机制却知之甚少。高脂饮食(HFD)会破坏肠道屏障功能,可能加速癌变。目的:在PDAC小鼠模型[p48-Cre; LSL-KrasG12D (KC)]中,评估ω-3脂肪酸在HFD诱导的变化中如何影响结肠屏障:将雌雄 KC 小鼠随机分为以下四组:i) 含有约 11% 脂肪总热量的对照饮食,ω-6:ω-3 FA 的比例为 10:1(C);ii) 含有高水平ω-3 FA 的对照饮食,ω-6:ω-3 FA 的比例为 1:1(C);iii) 含有高水平ω-3 FA 的对照饮食,ω-6:ω-3 FA 的比例为 1:1(C):ω-6:ω-3FA比值为1:1(Cω3);iii)含60%脂肪总热量的高脂饮食,ω-6:ω-3FA比值约为10:1(HF);iv)含高水平ω-3FA的高脂饮食,ω-6:ω-3FA比值为1:1(HFω3)。研究结果连续 8 周摄入高密度脂蛋白胆固醇膳食会导致:i)紧密连接结构和功能紊乱;ii)鹅口疮细胞数量减少;iii)结肠 TLR4 和 NOX1 表达升高;iv)TLR4 触发的通路(即 NF-κB、JNK1/2)被激活;v)血浆 LPS 水平升高;v)胰腺 TLR4 表达升高;以及 vi)尖状突变加速。所有这些事件在喂食高频ω3的小鼠中都得到了缓解:我们的研究结果支持这样一种观点,即在肥胖的情况下,ω-3脂肪酸通过调节肠道通透性和内毒素血症,对早期胰腺癌的发生具有保护作用。
Dietary omega-3 (ω-3) fatty acids mitigate intestinal barrier integrity alterations in mice fed a high-fat diet: Implications for pancreatic carcinogenesis.
Background: Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High fat diets (HFD) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity.
Objective: to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)].
Methods: Male and female KC mice were randomized into one of four groups: i) a control diet containing approximately 11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C); ii) the control diet with high levels of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3); iii) a HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF); iv) a HFD with high levels of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3).
Results: Consumption of a HFD for 8 weeks caused: i) disruption of tight junction structure and function; ii) decreased Goblet cell number, iii) higher colonic TLR4 and NOX1 expression; iv) activation of TLR4-triggered pathways, i.e. NF-κB, JNK1/2; v) elevated plasma LPS levels; v) higher pancreatic TLR4 expression, and vi) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3.
Conclusions: Our findings support the concept that, in the context of obesity, ω-3 FA have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.
期刊介绍:
The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.