血细胞膜包覆纳米材料作为抗肿瘤应用的多功能仿生纳米平台

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-31 DOI:10.3390/nano14211757
Hanchun Shen, Yongliang Ouyang, Liang Zhang, Jing Li, Shige Wang
{"title":"血细胞膜包覆纳米材料作为抗肿瘤应用的多功能仿生纳米平台","authors":"Hanchun Shen, Yongliang Ouyang, Liang Zhang, Jing Li, Shige Wang","doi":"10.3390/nano14211757","DOIUrl":null,"url":null,"abstract":"<p><p>The application of nanomaterials in tumor therapy is increasingly widespread, offering more possibilities for enhanced tumor therapy. However, the unclear biological distribution and metabolism of nanomaterials may lead to immune rejection or inflammatory reactions, posing numerous challenges to their clinical translation. The rich diversity and multifaceted functions of blood cells offer promising biological avenues for enhancing the application of nanoparticles in cancer therapy. Blood cell membranes, being made of naturally found components in the body, exhibit significant biocompatibility, which can reduce the body's immune rejection response, extend the drug's residence time in the bloodstream, and enhance its bioavailability. Integrating blood cell membranes with nanomaterials enhances tumor therapy by improving targeted delivery, prolonging circulation time, and evading immune responses. This review summarizes recent advancements in the application of blood cell membrane-coated nanomaterials for antitumor therapy, with a particular focus on their use in photodynamic and photothermal treatments. Additionally, it explores their potential for synergistic effects when combined with other therapeutic modalities.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548044/pdf/","citationCount":"0","resultStr":"{\"title\":\"Blood Cell Membrane-Coated Nanomaterials as a Versatile Biomimetic Nanoplatform for Antitumor Applications.\",\"authors\":\"Hanchun Shen, Yongliang Ouyang, Liang Zhang, Jing Li, Shige Wang\",\"doi\":\"10.3390/nano14211757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of nanomaterials in tumor therapy is increasingly widespread, offering more possibilities for enhanced tumor therapy. However, the unclear biological distribution and metabolism of nanomaterials may lead to immune rejection or inflammatory reactions, posing numerous challenges to their clinical translation. The rich diversity and multifaceted functions of blood cells offer promising biological avenues for enhancing the application of nanoparticles in cancer therapy. Blood cell membranes, being made of naturally found components in the body, exhibit significant biocompatibility, which can reduce the body's immune rejection response, extend the drug's residence time in the bloodstream, and enhance its bioavailability. Integrating blood cell membranes with nanomaterials enhances tumor therapy by improving targeted delivery, prolonging circulation time, and evading immune responses. This review summarizes recent advancements in the application of blood cell membrane-coated nanomaterials for antitumor therapy, with a particular focus on their use in photodynamic and photothermal treatments. Additionally, it explores their potential for synergistic effects when combined with other therapeutic modalities.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548044/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211757\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211757","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料在肿瘤治疗中的应用日益广泛,为加强肿瘤治疗提供了更多可能性。然而,纳米材料的生物分布和新陈代谢不明确,可能导致免疫排斥或炎症反应,给其临床转化带来诸多挑战。血细胞具有丰富的多样性和多方面的功能,这为加强纳米粒子在癌症治疗中的应用提供了广阔的生物途径。血细胞膜由体内天然成分组成,具有显著的生物相容性,可降低机体的免疫排斥反应,延长药物在血液中的停留时间,提高药物的生物利用度。将血细胞膜与纳米材料结合可提高靶向给药、延长血液循环时间和规避免疫反应,从而增强肿瘤治疗效果。本综述总结了应用血细胞膜包覆纳米材料进行抗肿瘤治疗的最新进展,尤其关注它们在光动力和光热治疗中的应用。此外,文章还探讨了纳米材料与其他治疗方式相结合产生协同效应的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blood Cell Membrane-Coated Nanomaterials as a Versatile Biomimetic Nanoplatform for Antitumor Applications.

The application of nanomaterials in tumor therapy is increasingly widespread, offering more possibilities for enhanced tumor therapy. However, the unclear biological distribution and metabolism of nanomaterials may lead to immune rejection or inflammatory reactions, posing numerous challenges to their clinical translation. The rich diversity and multifaceted functions of blood cells offer promising biological avenues for enhancing the application of nanoparticles in cancer therapy. Blood cell membranes, being made of naturally found components in the body, exhibit significant biocompatibility, which can reduce the body's immune rejection response, extend the drug's residence time in the bloodstream, and enhance its bioavailability. Integrating blood cell membranes with nanomaterials enhances tumor therapy by improving targeted delivery, prolonging circulation time, and evading immune responses. This review summarizes recent advancements in the application of blood cell membrane-coated nanomaterials for antitumor therapy, with a particular focus on their use in photodynamic and photothermal treatments. Additionally, it explores their potential for synergistic effects when combined with other therapeutic modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Current Advances in Nanoelectronics, Nanosensors, and Devices. Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire. Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells. Study of Hard Protein Corona on Lipid Surface of Composite Nanoconstruction. Synthesis of Needle-like CoO Nanowires Decorated with Electrospun Carbon Nanofibers for High-Performance Flexible Supercapacitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1