Jiadong Guo, Shaoqi Kong, Kunjie Li, Guoan Ren, Tao Yang, Kui Dong, Yueliang Liu
{"title":"有机和无机纳米孔隙在减压和吹气过程中的二氧化碳利用和封存。","authors":"Jiadong Guo, Shaoqi Kong, Kunjie Li, Guoan Ren, Tao Yang, Kui Dong, Yueliang Liu","doi":"10.3390/nano14211698","DOIUrl":null,"url":null,"abstract":"<p><p>CO<sub>2</sub> injection in shale reservoirs is more suitable than the conventional recovering methods due to its easier injectivity and higher sweep efficiency. In this work, Grand Canonical Monte Carlo (GCMC) simulation is employed to investigate the adsorption/desorption behavior of CH<sub>4</sub>-C<sub>4</sub>H<sub>10</sub> and CH<sub>4</sub>-C<sub>4</sub>H<sub>10</sub>-CO<sub>2</sub> mixtures in organic and inorganic nanopores during pressure drawdown and CO<sub>2</sub> huff and puff processes. The huff and puff process involves injecting CO<sub>2</sub> into the micro- and mesopores, where the system pressure is increased during the huffing process and decreased during the puffing process. The fundamental mechanism of shale gas recovery using the CO<sub>2</sub> injection method is thereby revealed from the nanopore-scale perspective. During primary gas production, CH<sub>4</sub> is more likely to be produced as the reservoir pressure drops. On the contrary, C<sub>4</sub>H<sub>10</sub> tends to be trapped in these organic nanopores and is hard to extract, especially from micropores and inorganic pores. During the CO<sub>2</sub> huffing period, the adsorbed CH<sub>4</sub> and C<sub>4</sub>H<sub>10</sub> are recovered efficiently from the inorganic mesopores. On the contrary, the adsorbed C<sub>4</sub>H<sub>10</sub> is slightly extracted from the inorganic micropores during the CO<sub>2</sub> puffing period. During the CO<sub>2</sub> puff process, the adsorbed CH<sub>4</sub> desorbs from the pore surface and is thus heavily recovered, while the adsorbed C<sub>4</sub>H<sub>10</sub> cannot be readily produced. During CO<sub>2</sub> huff and puff, the recovery efficiency of CH<sub>4</sub> is higher in the organic pores than that in the inorganic pores. More importantly, the recovery efficiency of C<sub>4</sub>H<sub>10</sub> reaches the highest levels in both the inorganic and organic pores during the CO<sub>2</sub> huff and puff process, suggesting that the CO<sub>2</sub> huff and puff method is more advanced for heavier hydrocarbon recovery compared to the pressure drawdown method. In addition to CO<sub>2</sub> storage, CO<sub>2</sub> sequestration in the adsorbed state is safer than that in the free state. In our work, it was found that the high content of organic matter, high pressure, and small pores are beneficial factors for CO<sub>2</sub> sequestration transforming into adsorbed state storage.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547425/pdf/","citationCount":"0","resultStr":"{\"title\":\"CO<sub>2</sub> Utilization and Sequestration in Organic and Inorganic Nanopores During Depressurization and Huff-n-Puff Process.\",\"authors\":\"Jiadong Guo, Shaoqi Kong, Kunjie Li, Guoan Ren, Tao Yang, Kui Dong, Yueliang Liu\",\"doi\":\"10.3390/nano14211698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CO<sub>2</sub> injection in shale reservoirs is more suitable than the conventional recovering methods due to its easier injectivity and higher sweep efficiency. In this work, Grand Canonical Monte Carlo (GCMC) simulation is employed to investigate the adsorption/desorption behavior of CH<sub>4</sub>-C<sub>4</sub>H<sub>10</sub> and CH<sub>4</sub>-C<sub>4</sub>H<sub>10</sub>-CO<sub>2</sub> mixtures in organic and inorganic nanopores during pressure drawdown and CO<sub>2</sub> huff and puff processes. The huff and puff process involves injecting CO<sub>2</sub> into the micro- and mesopores, where the system pressure is increased during the huffing process and decreased during the puffing process. The fundamental mechanism of shale gas recovery using the CO<sub>2</sub> injection method is thereby revealed from the nanopore-scale perspective. During primary gas production, CH<sub>4</sub> is more likely to be produced as the reservoir pressure drops. On the contrary, C<sub>4</sub>H<sub>10</sub> tends to be trapped in these organic nanopores and is hard to extract, especially from micropores and inorganic pores. During the CO<sub>2</sub> huffing period, the adsorbed CH<sub>4</sub> and C<sub>4</sub>H<sub>10</sub> are recovered efficiently from the inorganic mesopores. On the contrary, the adsorbed C<sub>4</sub>H<sub>10</sub> is slightly extracted from the inorganic micropores during the CO<sub>2</sub> puffing period. During the CO<sub>2</sub> puff process, the adsorbed CH<sub>4</sub> desorbs from the pore surface and is thus heavily recovered, while the adsorbed C<sub>4</sub>H<sub>10</sub> cannot be readily produced. During CO<sub>2</sub> huff and puff, the recovery efficiency of CH<sub>4</sub> is higher in the organic pores than that in the inorganic pores. More importantly, the recovery efficiency of C<sub>4</sub>H<sub>10</sub> reaches the highest levels in both the inorganic and organic pores during the CO<sub>2</sub> huff and puff process, suggesting that the CO<sub>2</sub> huff and puff method is more advanced for heavier hydrocarbon recovery compared to the pressure drawdown method. In addition to CO<sub>2</sub> storage, CO<sub>2</sub> sequestration in the adsorbed state is safer than that in the free state. In our work, it was found that the high content of organic matter, high pressure, and small pores are beneficial factors for CO<sub>2</sub> sequestration transforming into adsorbed state storage.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547425/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211698\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211698","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CO2 Utilization and Sequestration in Organic and Inorganic Nanopores During Depressurization and Huff-n-Puff Process.
CO2 injection in shale reservoirs is more suitable than the conventional recovering methods due to its easier injectivity and higher sweep efficiency. In this work, Grand Canonical Monte Carlo (GCMC) simulation is employed to investigate the adsorption/desorption behavior of CH4-C4H10 and CH4-C4H10-CO2 mixtures in organic and inorganic nanopores during pressure drawdown and CO2 huff and puff processes. The huff and puff process involves injecting CO2 into the micro- and mesopores, where the system pressure is increased during the huffing process and decreased during the puffing process. The fundamental mechanism of shale gas recovery using the CO2 injection method is thereby revealed from the nanopore-scale perspective. During primary gas production, CH4 is more likely to be produced as the reservoir pressure drops. On the contrary, C4H10 tends to be trapped in these organic nanopores and is hard to extract, especially from micropores and inorganic pores. During the CO2 huffing period, the adsorbed CH4 and C4H10 are recovered efficiently from the inorganic mesopores. On the contrary, the adsorbed C4H10 is slightly extracted from the inorganic micropores during the CO2 puffing period. During the CO2 puff process, the adsorbed CH4 desorbs from the pore surface and is thus heavily recovered, while the adsorbed C4H10 cannot be readily produced. During CO2 huff and puff, the recovery efficiency of CH4 is higher in the organic pores than that in the inorganic pores. More importantly, the recovery efficiency of C4H10 reaches the highest levels in both the inorganic and organic pores during the CO2 huff and puff process, suggesting that the CO2 huff and puff method is more advanced for heavier hydrocarbon recovery compared to the pressure drawdown method. In addition to CO2 storage, CO2 sequestration in the adsorbed state is safer than that in the free state. In our work, it was found that the high content of organic matter, high pressure, and small pores are beneficial factors for CO2 sequestration transforming into adsorbed state storage.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.