适合质子交换膜燃料电池的纳米冷却剂导热性理论模型研究

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-26 DOI:10.3390/nano14211710
Qi Tao, Boao Fu, Fei Zhong
{"title":"适合质子交换膜燃料电池的纳米冷却剂导热性理论模型研究","authors":"Qi Tao, Boao Fu, Fei Zhong","doi":"10.3390/nano14211710","DOIUrl":null,"url":null,"abstract":"<p><p>The fuel cell vehicle is one of the essential directions for developing new energy vehicles. But heat dissipation is a critical technical difficulty that needs to be solved urgently. Nano-coolant is a promising coolant that can potentially replace the existing coolant of a fuel cell. However, its thermal conductivity has a significant impact on heat dissipation performance, which is closely related to nanoparticles' thermal conductivity, nanoparticles' volume fraction, and the nano-coolant temperature. Many scholars have created the thermal conductivity models for nano-coolants to explore the mechanism of nano-coolants' thermal conductivity. At present, there is no unified opinion on the mechanism of the micro thermal conductivity of the nano-coolant. Hence, this paper proposed a novel model to predict the thermal conductivity of ethylene glycol/deionized water-based nano-coolants. A corrected model was designed based on the Hamilton & Crosser model and nanolayer theory. Finally, a new theoretical model of nano-coolant thermal conductivity suitable for fuel cell vehicles was constructed based on the base fluid's experimental data.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547494/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells.\",\"authors\":\"Qi Tao, Boao Fu, Fei Zhong\",\"doi\":\"10.3390/nano14211710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fuel cell vehicle is one of the essential directions for developing new energy vehicles. But heat dissipation is a critical technical difficulty that needs to be solved urgently. Nano-coolant is a promising coolant that can potentially replace the existing coolant of a fuel cell. However, its thermal conductivity has a significant impact on heat dissipation performance, which is closely related to nanoparticles' thermal conductivity, nanoparticles' volume fraction, and the nano-coolant temperature. Many scholars have created the thermal conductivity models for nano-coolants to explore the mechanism of nano-coolants' thermal conductivity. At present, there is no unified opinion on the mechanism of the micro thermal conductivity of the nano-coolant. Hence, this paper proposed a novel model to predict the thermal conductivity of ethylene glycol/deionized water-based nano-coolants. A corrected model was designed based on the Hamilton & Crosser model and nanolayer theory. Finally, a new theoretical model of nano-coolant thermal conductivity suitable for fuel cell vehicles was constructed based on the base fluid's experimental data.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547494/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211710\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211710","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

燃料电池汽车是发展新能源汽车的重要方向之一。但散热是亟待解决的关键技术难点。纳米冷却剂是一种很有前途的冷却剂,有可能取代燃料电池现有的冷却剂。然而,纳米冷却剂的导热性对散热性能有很大影响,这与纳米颗粒的导热性、纳米颗粒的体积分数和纳米冷却剂的温度密切相关。许多学者建立了纳米冷却剂的导热模型,以探索纳米冷却剂的导热机理。目前,关于纳米冷却剂的微观导热机理还没有统一的意见。因此,本文提出了一种新的模型来预测乙二醇/去离子水基纳米冷却剂的导热性。根据 Hamilton & Crosser 模型和纳米层理论设计了一个修正模型。最后,根据基础流体的实验数据,构建了适用于燃料电池汽车的纳米冷却剂热导率新理论模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells.

The fuel cell vehicle is one of the essential directions for developing new energy vehicles. But heat dissipation is a critical technical difficulty that needs to be solved urgently. Nano-coolant is a promising coolant that can potentially replace the existing coolant of a fuel cell. However, its thermal conductivity has a significant impact on heat dissipation performance, which is closely related to nanoparticles' thermal conductivity, nanoparticles' volume fraction, and the nano-coolant temperature. Many scholars have created the thermal conductivity models for nano-coolants to explore the mechanism of nano-coolants' thermal conductivity. At present, there is no unified opinion on the mechanism of the micro thermal conductivity of the nano-coolant. Hence, this paper proposed a novel model to predict the thermal conductivity of ethylene glycol/deionized water-based nano-coolants. A corrected model was designed based on the Hamilton & Crosser model and nanolayer theory. Finally, a new theoretical model of nano-coolant thermal conductivity suitable for fuel cell vehicles was constructed based on the base fluid's experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Current Advances in Nanoelectronics, Nanosensors, and Devices. Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire. Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells. Study of Hard Protein Corona on Lipid Surface of Composite Nanoconstruction. Synthesis of Needle-like CoO Nanowires Decorated with Electrospun Carbon Nanofibers for High-Performance Flexible Supercapacitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1