用优化和多机学习算法预测金和银纳米颗粒的纳米表面积传递参数

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-30 DOI:10.3390/nano14211741
Steven M E Demers, Christopher Sobecki, Larry Deschaine
{"title":"用优化和多机学习算法预测金和银纳米颗粒的纳米表面积传递参数","authors":"Steven M E Demers, Christopher Sobecki, Larry Deschaine","doi":"10.3390/nano14211741","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between gold metallic nanoparticles and molecular dyes have been well described by the nanometal surface energy transfer (NSET) mechanism. However, the expansion and testing of this model for nanoparticles of different metal composition is needed to develop a greater variety of nanosensors for medical and commercial applications. In this study, the NSET formula was slightly modified in the size-dependent dampening constant and skin depth terms to allow for modeling of different metals as well as testing the quenching effects created by variously sized gold, silver, copper, and platinum nanoparticles. Overall, the metal nanoparticles followed more closely the NSET prediction than for Förster resonance energy transfer, though scattering effects began to occur at 20 nm in the nanoparticle diameter. To further improve the NSET theoretical equation, an attempt was made to set a best-fit line of the NSET theoretical equation curve onto the Au and Ag data points. An exhaustive grid search optimizer was applied in the ranges for two variables, 0.1≤C≤2.0 and 0≤α≤4, representing the metal dampening constant and the orientation of donor to the metal surface, respectively. Three different grid searches, starting from coarse (entire range) to finer (narrower range), resulted in more than one million total calculations with values C=2.0 and α=0.0736. The results improved the calculation, but further analysis needed to be conducted in order to find any additional missing physics. With that motivation, two artificial intelligence/machine learning (AI/ML) algorithms, multilayer perception and least absolute shrinkage and selection operator regression, gave a correlation coefficient, R2, greater than 0.97, indicating that the small dataset was not overfitting and was method-independent. This analysis indicates that an investigation is warranted to focus on deeper physics informed machine learning for the NSET equations.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization and Multimachine Learning Algorithms to Predict Nanometal Surface Area Transfer Parameters for Gold and Silver Nanoparticles.\",\"authors\":\"Steven M E Demers, Christopher Sobecki, Larry Deschaine\",\"doi\":\"10.3390/nano14211741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactions between gold metallic nanoparticles and molecular dyes have been well described by the nanometal surface energy transfer (NSET) mechanism. However, the expansion and testing of this model for nanoparticles of different metal composition is needed to develop a greater variety of nanosensors for medical and commercial applications. In this study, the NSET formula was slightly modified in the size-dependent dampening constant and skin depth terms to allow for modeling of different metals as well as testing the quenching effects created by variously sized gold, silver, copper, and platinum nanoparticles. Overall, the metal nanoparticles followed more closely the NSET prediction than for Förster resonance energy transfer, though scattering effects began to occur at 20 nm in the nanoparticle diameter. To further improve the NSET theoretical equation, an attempt was made to set a best-fit line of the NSET theoretical equation curve onto the Au and Ag data points. An exhaustive grid search optimizer was applied in the ranges for two variables, 0.1≤C≤2.0 and 0≤α≤4, representing the metal dampening constant and the orientation of donor to the metal surface, respectively. Three different grid searches, starting from coarse (entire range) to finer (narrower range), resulted in more than one million total calculations with values C=2.0 and α=0.0736. The results improved the calculation, but further analysis needed to be conducted in order to find any additional missing physics. With that motivation, two artificial intelligence/machine learning (AI/ML) algorithms, multilayer perception and least absolute shrinkage and selection operator regression, gave a correlation coefficient, R2, greater than 0.97, indicating that the small dataset was not overfitting and was method-independent. This analysis indicates that an investigation is warranted to focus on deeper physics informed machine learning for the NSET equations.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14211741\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211741","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米金属表面能量传递(NSET)机制很好地描述了金金属纳米粒子与分子染料之间的相互作用。然而,要开发出更多种类的纳米传感器用于医疗和商业应用,还需要针对不同金属成分的纳米粒子对该模型进行扩展和测试。在本研究中,NSET 公式中与尺寸有关的阻尼常数和表皮深度项稍作修改,以便建立不同金属的模型,并测试不同尺寸的金、银、铜和铂纳米粒子产生的淬火效应。总体而言,金属纳米粒子比佛尔斯特共振能量转移更接近 NSET 的预测,但在纳米粒子直径为 20 纳米时开始出现散射效应。为了进一步改进 NSET 理论方程,我们尝试将 NSET 理论方程曲线的最佳拟合线设置到金和银数据点上。在两个变量(0.1≤C≤2.0 和 0≤α≤4)的范围内应用了穷举网格搜索优化器,这两个变量分别代表金属阻尼常数和供体对金属表面的取向。三种不同的网格搜索,从粗网格(整个范围)到细网格(较窄范围),在 C=2.0 和 α=0.0736 的值下,总共进行了 100 多万次计算。结果改进了计算,但还需要进行进一步分析,以找到任何其他缺失的物理量。在此激励下,两种人工智能/机器学习(AI/ML)算法,即多层感知和最小绝对收缩以及选择算子回归,给出了大于 0.97 的相关系数 R2,表明小数据集没有过度拟合,并且与方法无关。这一分析表明,有必要针对 NSET 方程进行更深入的物理学机器学习研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization and Multimachine Learning Algorithms to Predict Nanometal Surface Area Transfer Parameters for Gold and Silver Nanoparticles.

Interactions between gold metallic nanoparticles and molecular dyes have been well described by the nanometal surface energy transfer (NSET) mechanism. However, the expansion and testing of this model for nanoparticles of different metal composition is needed to develop a greater variety of nanosensors for medical and commercial applications. In this study, the NSET formula was slightly modified in the size-dependent dampening constant and skin depth terms to allow for modeling of different metals as well as testing the quenching effects created by variously sized gold, silver, copper, and platinum nanoparticles. Overall, the metal nanoparticles followed more closely the NSET prediction than for Förster resonance energy transfer, though scattering effects began to occur at 20 nm in the nanoparticle diameter. To further improve the NSET theoretical equation, an attempt was made to set a best-fit line of the NSET theoretical equation curve onto the Au and Ag data points. An exhaustive grid search optimizer was applied in the ranges for two variables, 0.1≤C≤2.0 and 0≤α≤4, representing the metal dampening constant and the orientation of donor to the metal surface, respectively. Three different grid searches, starting from coarse (entire range) to finer (narrower range), resulted in more than one million total calculations with values C=2.0 and α=0.0736. The results improved the calculation, but further analysis needed to be conducted in order to find any additional missing physics. With that motivation, two artificial intelligence/machine learning (AI/ML) algorithms, multilayer perception and least absolute shrinkage and selection operator regression, gave a correlation coefficient, R2, greater than 0.97, indicating that the small dataset was not overfitting and was method-independent. This analysis indicates that an investigation is warranted to focus on deeper physics informed machine learning for the NSET equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Current Advances in Nanoelectronics, Nanosensors, and Devices. Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire. Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells. Study of Hard Protein Corona on Lipid Surface of Composite Nanoconstruction. Synthesis of Needle-like CoO Nanowires Decorated with Electrospun Carbon Nanofibers for High-Performance Flexible Supercapacitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1