Heba Faheem, Rana Alawadhi, Eman Basha, Radwa Ismail, Hoda A Ibrahim, Amira M Elshamy, Shaimaa M Motawea, Monira A Seleem, Alaa Elkordy, Abdallah A Homouda, Howayda E Khaled, Reham A Aboeida, Muhammad Tarek Abdel Ghafar, Fatma H Rizk, Yasmeen M El-Harty
{"title":"Celastrol 通过靶向 TLR4/MYD88/NF-ᵰ5B 通路改善免疫依赖性炎症和细胞凋亡缓解糖尿病生殖功能障碍","authors":"Heba Faheem, Rana Alawadhi, Eman Basha, Radwa Ismail, Hoda A Ibrahim, Amira M Elshamy, Shaimaa M Motawea, Monira A Seleem, Alaa Elkordy, Abdallah A Homouda, Howayda E Khaled, Reham A Aboeida, Muhammad Tarek Abdel Ghafar, Fatma H Rizk, Yasmeen M El-Harty","doi":"10.1152/physiolgenomics.00072.2024","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to examine the protective effect of celastrol on testicular dysfunction in diabetic rats and the potential underlying mechanisms. All rats included in the study were divided into four groups: a control group treated with sodium citrate buffer and vehicle), a celastrol-treated control group, a streptozotocin (STZ)-induced diabetic group following insulin resistance, and a celastrol-treated diabetic group. Serum glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, interleukin (IL)-1β, tumor necrosis factor-alpha, and testosterone levels were measured. In addition, the levels of testicular homogenate superoxide dismutase and malondialdehyde were assessed. Furthermore, testicular tissue relative <i>TLR4</i>, <i>NF-</i><i>ᵰ5</i><i>B</i>, and <i>MYD88</i> expression were quantitatively measured using polymerase chain reaction. Histopathological and immunohistochemical studies were also conducted. The results revealed that treatment with celastrol significantly reduced <i>TLR4</i>, <i>MyD88</i>, <i>NF-</i><i>ᵰ5</i><i>B</i> expressions and the levels of inflammatory mediators such as tumor necrosis factor-alpha and IL-1ᵯD in the testicular tissue of treated rats. These findings suggest has the potential to be effective in the treatment of diabetes-induced testicular injury by inhibiting testicular inflammation, apoptosis, and oxidative stress.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorating Immune-dependent Inflammation and Apoptosis by Targeting TLR4/MYD88/NF-ᵰ5B Pathway by Celastrol Mitigates the Diabetic Reproductive Dysfunction.\",\"authors\":\"Heba Faheem, Rana Alawadhi, Eman Basha, Radwa Ismail, Hoda A Ibrahim, Amira M Elshamy, Shaimaa M Motawea, Monira A Seleem, Alaa Elkordy, Abdallah A Homouda, Howayda E Khaled, Reham A Aboeida, Muhammad Tarek Abdel Ghafar, Fatma H Rizk, Yasmeen M El-Harty\",\"doi\":\"10.1152/physiolgenomics.00072.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to examine the protective effect of celastrol on testicular dysfunction in diabetic rats and the potential underlying mechanisms. All rats included in the study were divided into four groups: a control group treated with sodium citrate buffer and vehicle), a celastrol-treated control group, a streptozotocin (STZ)-induced diabetic group following insulin resistance, and a celastrol-treated diabetic group. Serum glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, interleukin (IL)-1β, tumor necrosis factor-alpha, and testosterone levels were measured. In addition, the levels of testicular homogenate superoxide dismutase and malondialdehyde were assessed. Furthermore, testicular tissue relative <i>TLR4</i>, <i>NF-</i><i>ᵰ5</i><i>B</i>, and <i>MYD88</i> expression were quantitatively measured using polymerase chain reaction. Histopathological and immunohistochemical studies were also conducted. The results revealed that treatment with celastrol significantly reduced <i>TLR4</i>, <i>MyD88</i>, <i>NF-</i><i>ᵰ5</i><i>B</i> expressions and the levels of inflammatory mediators such as tumor necrosis factor-alpha and IL-1ᵯD in the testicular tissue of treated rats. These findings suggest has the potential to be effective in the treatment of diabetes-induced testicular injury by inhibiting testicular inflammation, apoptosis, and oxidative stress.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00072.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00072.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ameliorating Immune-dependent Inflammation and Apoptosis by Targeting TLR4/MYD88/NF-ᵰ5B Pathway by Celastrol Mitigates the Diabetic Reproductive Dysfunction.
This study aimed to examine the protective effect of celastrol on testicular dysfunction in diabetic rats and the potential underlying mechanisms. All rats included in the study were divided into four groups: a control group treated with sodium citrate buffer and vehicle), a celastrol-treated control group, a streptozotocin (STZ)-induced diabetic group following insulin resistance, and a celastrol-treated diabetic group. Serum glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, interleukin (IL)-1β, tumor necrosis factor-alpha, and testosterone levels were measured. In addition, the levels of testicular homogenate superoxide dismutase and malondialdehyde were assessed. Furthermore, testicular tissue relative TLR4, NF-ᵰ5B, and MYD88 expression were quantitatively measured using polymerase chain reaction. Histopathological and immunohistochemical studies were also conducted. The results revealed that treatment with celastrol significantly reduced TLR4, MyD88, NF-ᵰ5B expressions and the levels of inflammatory mediators such as tumor necrosis factor-alpha and IL-1ᵯD in the testicular tissue of treated rats. These findings suggest has the potential to be effective in the treatment of diabetes-induced testicular injury by inhibiting testicular inflammation, apoptosis, and oxidative stress.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.