叶电子学:用于可持续电子产品的天然木质纤维素支架。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-08 DOI:10.1126/sciadv.adq3276
Rakesh R. Nair, Jakob Wolansky, Kai Uhlig, Ali Solgi, Laura Teuerle, Tianyi Zhang, Jonas Schröder, Tobias Antrack, Johannes Benduhn, Hans Kleemann, Karl Leo
{"title":"叶电子学:用于可持续电子产品的天然木质纤维素支架。","authors":"Rakesh R. Nair,&nbsp;Jakob Wolansky,&nbsp;Kai Uhlig,&nbsp;Ali Solgi,&nbsp;Laura Teuerle,&nbsp;Tianyi Zhang,&nbsp;Jonas Schröder,&nbsp;Tobias Antrack,&nbsp;Johannes Benduhn,&nbsp;Hans Kleemann,&nbsp;Karl Leo","doi":"10.1126/sciadv.adq3276","DOIUrl":null,"url":null,"abstract":"<div >The global rise in electronic waste is alarming, driven by the persistent use of glass, epoxy, and plastic substrates owing to their cost, stability, flexibility, and transparency. This underscores the need for biodegradable alternatives with similar properties. This study shows that leaf-derived lignocellulose scaffolds can stabilize bio-sourced, solution-processed polymers by acting as natural sequestering media. Such reinforced films, even when based on gelatin (<i>T</i><sub>g</sub> ~ 60°C), can endure processes over 200°C. We demonstrate dip-coated ethyl cellulose films for commercially viable reflow soldered circuitry. The films offer high flexibility, more than 80% transparency, and surface roughness below 5.5 nm. Advanced OPDs and OECTs fabricated on these films perform comparably to those on glass and the low material cost and simple fabrication process yields a minimal carbon footprint of 1.6 kgCO<sub>2</sub>/m<sup>2</sup>. This work thus opens a vista of possibilities for biodegradable polymers heretofore considered unsuitable for making temperature-stable substrates for state-of-the-art electronics applications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546746/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leaftronics: Natural lignocellulose scaffolds for sustainable electronics\",\"authors\":\"Rakesh R. Nair,&nbsp;Jakob Wolansky,&nbsp;Kai Uhlig,&nbsp;Ali Solgi,&nbsp;Laura Teuerle,&nbsp;Tianyi Zhang,&nbsp;Jonas Schröder,&nbsp;Tobias Antrack,&nbsp;Johannes Benduhn,&nbsp;Hans Kleemann,&nbsp;Karl Leo\",\"doi\":\"10.1126/sciadv.adq3276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The global rise in electronic waste is alarming, driven by the persistent use of glass, epoxy, and plastic substrates owing to their cost, stability, flexibility, and transparency. This underscores the need for biodegradable alternatives with similar properties. This study shows that leaf-derived lignocellulose scaffolds can stabilize bio-sourced, solution-processed polymers by acting as natural sequestering media. Such reinforced films, even when based on gelatin (<i>T</i><sub>g</sub> ~ 60°C), can endure processes over 200°C. We demonstrate dip-coated ethyl cellulose films for commercially viable reflow soldered circuitry. The films offer high flexibility, more than 80% transparency, and surface roughness below 5.5 nm. Advanced OPDs and OECTs fabricated on these films perform comparably to those on glass and the low material cost and simple fabrication process yields a minimal carbon footprint of 1.6 kgCO<sub>2</sub>/m<sup>2</sup>. This work thus opens a vista of possibilities for biodegradable polymers heretofore considered unsuitable for making temperature-stable substrates for state-of-the-art electronics applications.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq3276\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq3276","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于玻璃、环氧树脂和塑料基底材料的成本、稳定性、灵活性和透明度,这些材料的持续使用导致全球电子废弃物的增加令人担忧。这凸显了对具有类似特性的可生物降解替代品的需求。本研究表明,源自树叶的木质纤维素支架可作为天然固存介质,稳定生物来源的溶液加工聚合物。即使是基于明胶(Tg ~ 60°C)的增强薄膜,也能承受 200°C 以上的加工温度。我们展示了用于商业化回流焊接电路的浸涂乙基纤维素薄膜。这种薄膜具有很高的柔韧性,透明度超过 80%,表面粗糙度低于 5.5 nm。在这些薄膜上制造的先进 OPD 和 OECT 的性能与在玻璃上制造的不相上下,而且材料成本低、制造工艺简单,产生的碳足迹最小,仅为 1.6 kgCO2/m2。因此,这项工作为生物可降解聚合物开辟了一条新的可能性之路,因为在此之前,生物可降解聚合物一直被认为不适合用于制造温度稳定的基底,而这种基底可用于最先进的电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leaftronics: Natural lignocellulose scaffolds for sustainable electronics
The global rise in electronic waste is alarming, driven by the persistent use of glass, epoxy, and plastic substrates owing to their cost, stability, flexibility, and transparency. This underscores the need for biodegradable alternatives with similar properties. This study shows that leaf-derived lignocellulose scaffolds can stabilize bio-sourced, solution-processed polymers by acting as natural sequestering media. Such reinforced films, even when based on gelatin (Tg ~ 60°C), can endure processes over 200°C. We demonstrate dip-coated ethyl cellulose films for commercially viable reflow soldered circuitry. The films offer high flexibility, more than 80% transparency, and surface roughness below 5.5 nm. Advanced OPDs and OECTs fabricated on these films perform comparably to those on glass and the low material cost and simple fabrication process yields a minimal carbon footprint of 1.6 kgCO2/m2. This work thus opens a vista of possibilities for biodegradable polymers heretofore considered unsuitable for making temperature-stable substrates for state-of-the-art electronics applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission Dynamical control of nanoscale electron density in atomically thin n-type semiconductors via nano-electric pulse generator Gas-phase preparation of silylacetylene (SiH3CCH) through a counterintuitive ethynyl radical (C2H) insertion Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1